PAT T1016 Uniqueness of MST(35)

传送门

无向图,判断其mst的唯一性,若没有mst则输出连通分量数。

结论只有当原图中存在权值相等的边的情况下,才有可能会造成mst不唯一。

还是原来的kruskal算法,但是设置一个两层循环来从小到大遍历边,其中内层循环遍历的都是权值相同的边(神似PAT A1009,在一个有序数列中合并“同类项”。。)

使用两个这样的内层循环:

  • 前者在上一次外层循环的状态下测试每条边的可用性;(计数变量edge)(不union,不会改变原算法结果)
  • 后者在上一次当前循环的状态下测试每条边的可用性。(计数变量conn

可以看出:

  • 一定有edge>=conn
  • edge>conn && conn==N-1等价于mst不唯一。(考虑某个内层循环,edge一定比conn多计算了,实质是出现了权值相等且“作用”相同的两条边)

对于判断连通分量数,遍历到边表最后就行了,参考这个总结

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

const int MAXN = 501;
int N, M;
int pre[MAXN];

int edge;                  // 本题核心。一个含义比较特殊的计数变量,比conn更宽松,可以保证edge>=conn  
int conn;
int mst;

struct Edge
{
	Edge(int _n1, int _n2, int _w) :n1(_n1), n2(_n2), w(_w) {}
	int n1, n2, w;
	bool operator<(const Edge& e) const
	{
		return w < e.w;
	}
};
vector<Edge> ve;

void init()
{
	fill(pre + 1, pre + N + 1, -1);
	edge = 0;
	conn = 0;
	mst = 0;
}

int f(int n)
{
	if (pre[n] < 0) return n;
	return pre[n] = f(pre[n]);
}

bool u(int n1, int n2)
{
	int f1 = f(n1);
	int f2 = f(n2);
	if (f1 == f2) return false;
	if (pre[f1] <= pre[f2])           // f1 != f2
	{
		pre[f1] += pre[f2];
		pre[f2] = f1;
	}
	else
	{
		pre[f2] += pre[f1];
		pre[f1] = f2;
	}
	conn++;
	return true;
}

int main()
{
	int n1, n2, w;
	scanf("%d%d", &N, &M);
	init();
	for (; M--;)
	{
		scanf("%d%d%d", &n1, &n2, &w);
		ve.push_back(Edge(n1, n2, w));
	}
	sort(ve.begin(), ve.end());

	for (int i = 0, j, size = ve.size(); i < size; i = j)
	{
		for (j = i; j < size && ve[i].w == ve[j].w; j++)
			if (f(ve[j].n1) != f(ve[j].n2))
				edge++;

		for (j = i; j < size && ve[i].w == ve[j].w; j++)
		{
			if (u(ve[j].n1, ve[j].n2))
				mst += ve[j].w;
			if (conn == N - 1) goto PRINT;     // 跳两层循环
		}
	}

PRINT:
	if (conn != N - 1)
		printf("No MST\n%d\n", N - conn);
	else if (edge > N - 1)                     // 此时已经保证是连通图,conn等于N-1
		printf("%d\nNo\n", mst);
	else if (edge == N - 1)                    // 这里其实不用else if了,因为此时edge一定等于N-1了
		printf("%d\nYes\n", mst);

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值