学习 严蔚敏讲数据结构笔记06

150 篇文章 0 订阅
28 篇文章 0 订阅

五、其它形式的链表

1.双向链表

06_001

//线性表的双向链表存储结构

typedef struct DuLNode

{

         ElemType  data; //数据域

         struct  DuLNode *prior; //指向前驱的指针域

         struct  DuLNode *next; //指向后继的指针域

}DuLNode,   *DuLLinkList;

2.循环链表

最后一个结点的指针域的指针又指回第一个结点的链表

2.4一元多项式的表示

一元多项式

Pn(x) = P0+p1x+p2x2+…+pnxn在计算机中,可以用一个线性表来表示:P=(p0,p1,…pn)

S(x)=1+3x10000-2x20000

Pn(x)=p1xe1+p2xe2+…+pmxem其中:pi是指数ei的项的非零系数,0e1e2em=n

((p1,e1),(p2,e2),…,(pm,em))

P999(x)=7x3-2x12-8x999

抽象数据类型一元多项式的定义如下:

ADT Polynomial

{

数据对象:D={ai|aiTermSet, i=1,2,...,m, m0}

         {TermSet中每个元素包含一个表示系数的实数和表示指数的整数}

数据关系:RI={<ai-1,ai>|ai-1,aiD,ai-1中的指数值<ai的指数值,i=2,…,n}

基本操作:CreatePolyn(&P,m)

操作结果:输入m项的系数和指数,建立一元多项式P

DestoryPolyn(&P)

初始条件:一元多项式P已存在。

操作结果:销毁一元多项式P

PrintPolyn(&P)

初始条件:一元多项式P已存在。

操作结果:打印输出一元多项式P

AddPolyn(&Pa,&Pb)

初始条件:一元多项式PaPb已存在。

操作结果:完成多项式相加运算,即:Pa=Pa+Pb,并销毁多项式Pb

SubractPolyn(&Pa,&Pb)

初始条件:一元多项式PaPb已存在。

操作结果:完成多项式相减运算,即:Pa=Pa-Pb,并销毁多项式Pb

MultiplyPolyn(&Pa,&Pb)

初始条件:一元多项式PaPb已存在。

操作结果:完成多项式相减运算,即:Pa=Pa*Pb,并销毁多项式Pb

PolynLength(P)

初始条件:一元多项式P已存在。

操作结果:返回一元多项式P中的项数。

} ADT Polynomial

如此定义的多项式可以看成是一个有序表(对其数据元素而言),则多项式定义中的各个操作均可利用有序表的操作来完成。

抽象数据类型Polynomail的实现

typedef struct

{

         //项的表示,多项式的项

         //作为LinkList的数据元素

         floatcoef; //系数

         intexpn: //指数

} term, Elemtype;

//若两个类型名:term用于本ADTElemTypeLinkList的数据对象

typedef LinkList polynominal;

//用带头节点的有序链表表示多项式

int cmp(term a, term b);

//a的指数值<(或=)(或>)b的指数值,分别返回-10,和+1

 

06_002

void CreatePolyn(polynomial &p, int  m)

{

         //输入m项的系数好指数,建立表示一元多项式的有序链表P

         InitList(P);

         e.coef  = 0.0;

         e.expn  = -1;

         SetCurElem(P,  e); //设置头结点的数据元素

         for(j  = 1; j <= m; ++ i)

         {

                   //依次输入m个非零项

                   scanf(e.coef,  e.expn);

                   if(!  LocateElem(P, e, (*cmp)()))

                            //当前链表中不存在该指数项

                            InsAfter(P,  e);

         }//for

} // CreatePolyn

 

本章小节

1.了解线性表的逻辑结构特性是数据元素之间存在着线性关系,在计算机中表示这种关系的两类不同的存储结构是顺序存储结构和链式存储结构。用前者表示线性表简称为顺序表,用后者表示的线性表称为链表。

2.熟练掌握这两类存储结构的描述方法,以及线性表的各种基本操作的实现。

3.能够从时间和空间复杂度的角度综合比较线性表两种存储结构的不同特点极其使用的场合。

 

第三章栈和队列

3.1 栈的类型定义

3.2 栈的应用举例

3.3 栈的型的实现

3.4 队列的类型定义

3.5 队列类型的实现

 

3.1 栈的类型定义

ADT Stack

{

数据对象:D={ai|aiElemSet,i=1,2,…,n,n0}

数据关系:R1={<ai-1,ai>|ai-1,aiD,i=2,…,n}约定an端为栈顶,a1端为栈底。

基本操作:

}ADT Stack

 

 

线性表

队列

插入:ListInsert(L,i,e)

1<=i<=ListLength(L)+1

Insert(s,n+1,e)

Insert(Q,i+1,e)

删除:ListDelete(L,i,&e)

I<=i<=ListLength(L)

Delete(s,n,&e)

Delete(Q,1,e)

基本操作

InitStack(&S)

DestoryStack(&S)

StackEmpty(S)

StackLength(S)

GetTop(&S)

ClearStack(&S)

Push(&S,e)

Pop(&S,&e)

 

InitStack(&S)

操作结果:构造一个空栈S

DestoryStack(&S)

初始条件:栈S已存在。

操作结果:栈S被销毁。

StackEmpty(S)

初始条件:栈S已存在。

操作结果:若栈S为空栈,则返回TRUE,否则返回FALSE

StackLength(S)

初始条件:栈S已存在。

操作结果:返回S的元素个数,即栈的长度。

GetTop(S,&e)

初始条件:栈S已存在且非空。

操作结果:用e返回S的栈顶元素。

ClearStack(&S)

初始条件:栈S已存在。

操作结果:将S清为空栈。

Push(&S,e)

初始条件:栈S已存在。

操作结果:插入元素e为新的栈顶元素。

Pop(&S,&e)

初始条件:栈S已存在且非空。

操作结果:删除S的栈顶元素,并用e返回其值。

 

3.2栈的应用举例

例一、数制转换

例二、括号匹配的检查

例三、行编辑程序问题

例四、迷宫求解

例五、表达式求值

例六、实现递归

 

例一、数制转换

算法基于原理:N=(N div d)*d+N mod d

例如:(1348)10=(2504)8,其运算过程如下:

 

N

N div 8

N mod 8

1348

168

4

168

21

0

21

2

5

2

0

2

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值