研究生初试
文章平均质量分 67
普通网友
这个作者很懒,什么都没留下…
展开
-
单位阶跃序列-25考研信号与系统复习大全
在实际应用中,我们通常通过极限的方式来处理这种情况,得到 U(e^{j0}) = \lim_{{\omega \to 0}} \frac{1}{1 - e^{-j\omega}} = \infty,即单位阶跃序列在 ω=0 处有无限大的频谱密度。#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#揭秘单位阶跃序列的DTFT奥秘💫。原创 2024-07-16 13:24:25 · 390 阅读 · 0 评论 -
单边指数序列-考研良哥信号与系统复习大全
📚信号与系统考研必备:揭秘常见序列的DTFT,聚焦单边指数序列🌟考研的小伙伴们,今天我们来聊聊信号与系统中的一个重要考点——,特别是让人又爱又恨的单边指数序列!😎。原创 2024-07-16 09:56:21 · 491 阅读 · 0 评论 -
DTFT反变换-信号与系统复习大全考研良哥
🔍信号与系统考研秘籍:揭秘DTFT的反变换之旅🚀亲爱的小伙伴们,信号与系统考研的征途上,我们又迎来了一个重要关卡——!今天,我们就来深度揭秘DTFT反变换的奥秘,让你的复习之路更加畅通无阻!🌟。原创 2024-07-16 09:47:50 · 431 阅读 · 0 评论 -
DTFT定义和计算-25考研信号与系统复习大全
首先,咱们得知道DTFT是啥。简单来说,DTFT就是用来分析非周期离散时间信号的一种数学工具。它能够将时域中的非周期序列转换到频域中,让我们从另一个角度观察信号的特性。DTFT的定义公式如下:这个公式告诉我们,DTFT是通过对非周期序列x[n]进行无限求和,并乘以复指数函数e−jωn来得到的。这里的ω是角频率,而X(ω)则是信号在频域中的表示。原创 2024-07-16 09:40:20 · 390 阅读 · 0 评论 -
周期性-2025考研信号与系统复习大全
首先,我们要明确一点:DTFS是用来分析离散时间周期信号的强大工具。而它最为迷人的特性之一,就是系数的周期性。想象一下,当你对一个周期为N的离散时间周期信号进行DTFS分析时,得到的系数X[k]竟然也呈现出周期性!这意味着,每当你将频率索引k增加N的整数倍时,系数X[k]都会重复出现。这种美妙的周期性,正是DTFS系数独有的魅力所在!💫。原创 2024-07-16 09:31:03 · 432 阅读 · 0 评论 -
离散时间系数的讨论 -信号与系统复习大全
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#由于序列是N周期的,我们可以将求和范围限制在一个周期内,即 n=0,1,...,N−1。简单来说,就是存在一个正整数N,使得对于所有的n,都有x[n] = x[n+N]。DTFS在信号处理中有着广泛的应用。注意,这里的求和虽然是无限的,但由于序列的周期性,实际上只有N个不同的项在求和。原创 2024-07-15 13:49:46 · 352 阅读 · 0 评论 -
离散时间傅里叶级数-信号与系统复习大全
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#由于序列是N周期的,我们可以将求和范围限制在一个周期内,即 n=0,1,...,N−1。简单来说,就是存在一个正整数N,使得对于所有的n,都有x[n] = x[n+N]。DTFS在信号处理中有着广泛的应用。注意,这里的求和虽然是无限的,但由于序列的周期性,实际上只有N个不同的项在求和。原创 2024-07-15 13:38:21 · 409 阅读 · 0 评论 -
特征函数在离散频域-信号与系统复习大全
然而,在离散时间系统中,由于信号只在特定的时间点上存在,我们需要使用离散傅里叶变换(DFT)或更常用的快速傅里叶变换(FFT)来将信号转换到离散频域。在信号与系统的世界里,特征函数就像是系统的“身份证”,它揭示了系统在某些特定变换下的独特响应。简单来说,当我们对一个系统施加一个特定的输入信号(即特征函数),系统的输出将直接反映该系统的某些固有特性。将Z域中的特征值和特征函数转换到离散频域(即Z平面上的单位圆),我们可以观察到系统在不同频率下的响应特性。这个概念不仅是理论知识的瑰宝,也是解题时的一把利剑。原创 2024-07-15 13:31:17 · 686 阅读 · 0 评论 -
变换域-信号与系统复习大全考研良哥
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#变换域法,简单来说,就是通过将离散状态方程转换到某个变换域(如Z域)中进行求解的方法。这通常涉及到对差分方程进行Z变换,将时间域的差分关系转换为Z域的代数关系。在反变换回时域时,需要特别注意初始条件的处理。求解出Z域中的解后,我们需要通过Z反变换将其转换回时域,得到时间域中的状态值和输出值。原创 2024-07-15 13:23:43 · 283 阅读 · 0 评论 -
时域法-2025考研信号与系统复习大全
比如,x[k+1] = Ax[k] + Bu[k],其中x[k]是系统在k时刻的状态,u[k]是k时刻的输入,A和B是系统参数矩阵。比如,从x[k+1] = Ax[k] + Bu[k]开始,可以进一步展开为x[k+2] = A(Ax[k] + Bu[k]) + Bu[k+1],以此类推。#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-15 13:15:46 · 374 阅读 · 0 评论 -
状态转移矩阵eAt -信号与系统复习大全
首先,我们需要明确eAt的定义。在数学上,eAt是一个矩阵指数函数,其中A是系统的状态矩阵,t是时间变量。这个函数表示了矩阵A经过时间t的连续作用后,对单位矩阵I的变换结果。原创 2024-07-15 10:24:39 · 562 阅读 · 0 评论 -
状态方程时域解法-信号与系统复习大全
而状态方程的时域解法,就是直接在时间域内求解这些微分方程,以得到系统的状态变量随时间的变化规律。#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#记得多加练习,巩固知识,相信你一定能够取得优异的成绩!首先,根据系统的物理特性或数学模型,建立描述系统状态变量的微分方程。其中,x(t) 是状态变量,u(t) 是输入信号,A 和 B 是系统矩阵。原创 2024-07-15 10:08:01 · 454 阅读 · 0 评论 -
系统函数 -信号与系统复习大全考研良哥
🔍信号与系统考研深度解析:从系统函数到离散状态方程的魔法转换🔍亲爱的考研小伙伴们,🎓 信号与系统这门课的深度与广度总是让人又爱又恨。今天,我们就来揭秘一个高级技巧——如何从系统函数出发,建立起离散状态方程。这不仅是对你系统理解能力的考验,更是考研路上的加分项哦!✨📚系统函数,也被称为传递函数或Z变换,是描述系统输入输出关系的重要工具。在离散时间系统中,它通常表示为H(z),其中z是复变量,代表了时间延迟的算子。系统函数不仅揭示了系统的频率特性,还隐含了系统的状态演变规律。🔍。原创 2024-07-15 09:51:22 · 353 阅读 · 0 评论 -
信号流图/框图-信号与系统考研复习大全
将识别出的状态节点按照一定顺序排列,组成状态向量。状态向量的选择并不是唯一的,但通常我们会选择能够全面描述系统状态的变量作为状态向量的元素。原创 2024-07-15 09:38:58 · 332 阅读 · 0 评论 -
系统函数 -考研良哥信号与系统复习大全
为了建立状态方程,我们首先需要定义状态变量。在离散时间系统中,状态变量通常选择为能够完全描述系统当前状态的一组变量。这些变量可以是系统的输出、输入的延迟版本,或者是它们的某种组合。原创 2024-07-13 14:09:06 · 444 阅读 · 0 评论 -
信号流图-2025考研信号与系统复习大全
首先,明确哪个或哪些变量将作为状态变量。原创 2024-07-13 14:01:53 · 389 阅读 · 0 评论 -
微分方程建立状态方程 -信号与系统复习大全
标题:🔍信号与系统考研进阶:由微分方程建立状态方程全攻略📚正文:亲爱的考研小伙伴们,今天我们来深入探讨一个信号与系统复习中的难点——。这不仅是理论知识的综合运用,也是解题技巧的一大考验哦!💪。原创 2024-07-13 13:52:26 · 1704 阅读 · 0 评论 -
电路图建立状态方程-信号与系统复习大全
假设有一个简单的RC电路,包含一个电阻R、一个电容C和一个电压源E(t)。接下来,利用基尔霍夫电压定律(KVL)和基尔霍夫电流定律(KCL)来建立电路中的电压和电流关系。首先,面对一张电路图,我们要做的第一件事就是找出那些“关键先生”——电容(C)和电感(L)。在大多数情况下,我们可以选择电容的电压v(t)或电感的电流i(t)作为状态变量。好啦,宝贝们,现在你们已经掌握了从电路图建立连续状态方程的秘诀啦!di/dt),我们可以推导出包含状态变量(v(t)或i(t))的微分方程。标题:🔍信号与系统考研秘籍!原创 2024-07-13 13:39:59 · 301 阅读 · 0 评论 -
状态方程与输出方程-信号与系统复习大全
标题:🔥信号与系统考研复习大揭秘!掌握状态方程与输出方程,轻松拿高分✨正文:Hey小伙伴们,又到了一年一度的考研冲刺季啦!🎓今天就来给大家揭秘信号与系统这门“硬核”科目中的重头戏——的一般形式,让你在考场上游刃有余!🚀。原创 2024-07-13 13:27:05 · 475 阅读 · 0 评论 -
幅频特性绘制-信号与系统复习大全考研良哥
标题:🔥信号与系统考研复习大揭秘!Z变换应用与幅频相频特性绘制全攻略🔍正文:Hey小伙伴们,考研路上是不是正为信号与系统的复习焦头烂额呢?别怕,今天就来给大家揭秘Z变换的神奇应用,特别是如何绘制出那让人头疼的幅频特性和相频特性图!🌟。原创 2024-07-13 11:55:53 · 429 阅读 · 0 评论 -
频率响应求解 -考研良哥信号与系统复习大全
信号与系统的考研复习之路虽然漫长且充满挑战,但只要我们坚持不懈、勇于探索,就一定能够掌握其中的精髓和奥秘!加油吧,考研党们!用你们的智慧和努力书写属于自己的辉煌篇章!✨希望这篇笔记能对你的考研复习有所帮助!💖#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-13 09:43:47 · 331 阅读 · 0 评论 -
朱里准则-2025考研良哥信号与系统复习大全
信号与系统的考研复习之路虽然充满挑战,但只要我们掌握了正确的方法和技巧,就能够化繁为简、迎刃而解。加油吧,考研党们!用你们的智慧和汗水,书写属于自己的辉煌篇章!✨希望这篇笔记能为你的考研复习之路增添一份力量!💖#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-13 09:36:16 · 721 阅读 · 0 评论 -
零输入响应的求解-信号与系统复习大全
首先,我们来明确一下什么是零输入响应。在信号与系统中,零输入响应是指当系统的输入信号为零(即没有外部激励)时,仅由系统初始状态引起的响应。简单来说,就是系统“自带”的响应,与外部输入无关。🔄考研不易,但坚持就是胜利!掌握零输入响应的求解方法,只是你成功路上的一个小小里程碑。🌟✨#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-13 09:23:46 · 475 阅读 · 0 评论 -
系统函数求解-信号与系统复习大全考研良哥
考研之路虽然漫长且充满挑战,但只要我们坚持不懈,掌握正确的学习方法,就一定能够取得优异的成绩!加油,考研人!💪✨#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-13 09:13:41 · 383 阅读 · 0 评论 -
部分分式展开法-信号与系统复习大全
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#但部分分式展开法就像一位魔术师,能够巧妙地将复杂的Z变换式拆解成一系列简单的部分分式之和,从而大大简化了求逆变换的过程。考研的学子们,今天我们来深入剖析信号与系统复习中的一大难点——Z逆变换的求解,特别是那让人又爱又恨的部分分式展开法!:利用代数方法或解方程组,求出每个部分分式的系数。原创 2024-07-12 14:55:32 · 671 阅读 · 0 评论 -
长除法-信号与系统复习大全考研良哥
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#Hey考研战士们,今天咱们来聊聊信号与系统复习中的一大杀器——幂级数展开法,特别是其中的长除法技巧!在面对复杂的信号分析时,掌握这一招,就像拥有了化繁为简的魔法棒,让难题迎刃而解!它类似于我们小学时学的多项式除法,但在这里,我们是对一个函数进行“除法”,以求得其幂级数展开式。原创 2024-07-12 14:36:20 · 365 阅读 · 0 评论 -
终值定理-考研良哥信号与系统复习大全
终值定理,顾名思义,就是用来求解离散时间系统输出信号在n趋于无穷大时的极限值,也就是系统的终值。这个定理对于分析系统的稳态响应尤为重要,特别是在处理无限长序列或系统稳定性分析时,更是不可或缺的工具。在面对纷繁复杂的考题时,这个定理就像一把钥匙,能帮你轻松打开求解系统输出终值的大门。注意,这里的Y(z)是输出信号的Z变换,并且要求系统的极点都在单位圆内(即系统稳定)。希望这篇笔记能为你的信号与系统考研复习之路增添一份力量,祝你考试顺利,前程似锦!#信号与系统考研# #Z变换终值定理# #考研复习攻略#原创 2024-07-12 13:42:56 · 445 阅读 · 0 评论 -
初值定理 -2025考研良哥信号与系统复习大全
简单来说,它告诉我们如何仅通过系统的Z变换(H(z))和系统输入信号的Z变换(X(z)),快速求得系统输出信号的初始值(即n=0时的输出值y[0])。#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#别怕,今天就带你解锁Z变换中的一个重要法宝——初值定理,让你的考研之路更加平坦!标题:🌟信号与系统考研秘籍:掌握Z变换初值定理,考题不再难!原创 2024-07-12 13:32:20 · 306 阅读 · 0 评论 -
Z域尺度变换性质-信号与系统复习大全
反过来,如果信号在时域上进行扩展(虽然这在离散信号中不常见,但理论上是可行的),比如x[n/a](注意n需要适当限制或取整),那么Z变换X(z)就会“压缩”,变成X(az)。Z域上的图形会被压缩,频谱也相应地被压缩。想象一下,如果你的信号x[n]在时域上被压缩了(时间轴变快),比如变成了x[an](a为正整数),那么它的Z变换X(z)就会“拉伸”,变成X(a¹z)。简单来说,它就是连接时域与Z域的一座神奇桥梁,当离散时间信号在时域进行伸缩变换时(比如信号被压缩或扩展),它的Z变换在Z域上会有怎样的表现呢?原创 2024-07-12 13:25:59 · 555 阅读 · 0 评论 -
时移性质-2025考研信号与系统复习大全
首先,简单回顾一下Z变换的定义。Z变换是离散时间信号到复平面的映射,它将离散时间信号转换为一个复变函数,便于在复平面上进行信号分析和系统设计。其定义式为:其中,x[n]是离散时间信号,z是复变量。原创 2024-07-12 10:00:10 · 320 阅读 · 0 评论 -
单边Z变换收敛域-信号与系统复习大全
单边Z变换主要针对因果信号,即信号在n<0时为零。其定义式为:这里,x[n]是因果信号,n是时间索引,z是复变量。原创 2024-07-12 09:51:49 · 637 阅读 · 0 评论 -
双边Z变换收敛域-考研信号与系统复习大全
在双边Z变换中,收敛域(Region of Convergence, ROC)是指使Z变换级数收敛的z的复平面上的区域。换句话说,只有当z取值在这个区域内时,双边Z变换的级数才会收敛到一个有限值。原创 2024-07-12 09:42:20 · 443 阅读 · 0 评论 -
双边Z变换定义-信号与系统复习大全考研良哥
在信号与系统的考研征途中,双边Z变换(Bilateral Z-Transform)是一个不可或缺的重要概念。它不仅连接了离散时间信号与复平面上的Z域,还为信号的分析、处理及系统性能评估提供了强有力的数学工具。今天,我们就来深度解析双边Z变换的定义,助你考研路上一臂之力!双边Z变换,顾名思义,是一种将离散时间信号映射到复平面Z域上的变换方法。与单边Z变换(仅考虑因果信号)不同,双边Z变换对信号的时间范围没有限制,既包含正时间轴也包含负时间轴上的样本。原创 2024-07-12 09:29:48 · 432 阅读 · 0 评论 -
幅频与相频特性曲-信号与系统复习大全
通过以上步骤,我们可以清晰地绘制出信号的幅频特性曲线和相频特性曲线。这两个曲线对于理解信号在频域上的特性至关重要,也是信号与系统考研中的重要考点。希望这篇笔记能帮助大家更好地掌握这部分内容,顺利通过考试!记得在复习过程中,结合具体的信号实例进行练习,加深理解哦!祝你考研顺利!🌟#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#原创 2024-07-12 09:21:48 · 1585 阅读 · 0 评论 -
正弦稳态响应-考研良哥信号与系统复习大全
亲爱的考研小伙伴们,信号与系统作为通信、电子、自动化等专业的核心课程,其重要性不言而喻。掌握它,你的分数就能稳稳提升!#考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#简单来说,正弦稳态响应就是系统在正弦信号激励下,经过一定时间后达到的稳定输出状态。正弦稳态响应作为信号与系统考研的重要考点,其掌握程度直接影响到你的分数。原创 2024-07-11 14:26:37 · 528 阅读 · 0 评论 -
零极点图的绘制-信号与系统复习大全
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#考研路上的小伙伴们,今天我们来聊聊信号与系统复习中一个既有趣又实用的部分——拉普拉斯变换的零极点图绘制。分子多项式的根即为系统的零点,分母多项式的根则为系统的极点。好啦,今天的分享就到这里啦!绘制零极点图的步骤其实并不复杂,关键在于理解系统的传递函数,并从中提取出零点和极点的信息。原创 2024-07-11 14:07:21 · 640 阅读 · 0 评论 -
微分方程求解-信号与系统复习大全考研良哥
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#这一步是解题的关键,它让我们从复杂的微分方程中解脱出来,进入了一个相对简单的代数世界。亲爱的考研小伙伴们,今天我们来聊聊信号与系统复习中的一大杀器——拉普拉斯变换,特别是它在微分方程求解中的那些让人眼前一亮的应用!使用部分分式展开法或查表法,我们可以找到Y(s)的逆变换,即原微分方程的解。原创 2024-07-11 13:58:14 · 481 阅读 · 0 评论 -
有重根无共轭根真分式-信号与系统复习大全
考研[话题]# #考研信号与系统[话题]# #考研良哥[话题]# #考研信号与系统网课[话题]# #2025考研[话题]# #复习大全[话题]# #研究生初试[话题]# #北京邮电大学考研[话题]#今天,我要和大家深扒一个超重要的考点——拉普拉斯变换逆变换中的部分分式展开法,特别是当遇到有重根无共轭根的真分式时,该如何应对?对于n重根s=a,我们需要设置n个部分分式,它们的分母都相同为(s−a),但分子A1, A2, ..., An各不相同。好啦,今天的分享就到这里啦!原创 2024-07-11 13:44:37 · 550 阅读 · 0 评论 -
部分分式展开-考研良哥信号与系统复习大全
拉普拉斯逆变换是信号与系统中的一个重要概念,它用于从信号的拉普拉斯变换F(s)中恢复出原信号f(t)。当我们面对的是分母包含多项式乘积的F(s)时,部分分式展开法成为了一种非常有效的求解手段。部分分式展开法是求解拉普拉斯逆变换的一种重要手段,尤其在处理复杂多项式形式时更为有效。希望今天的分享能帮助大家在信号与系统考研复习中更加游刃有余,取得优异成绩!以上笔记希望对正在备考信号与系统的小伙伴们有所帮助,祝大家考研顺利!原创 2024-07-11 13:37:55 · 448 阅读 · 0 评论 -
拉普拉斯逆变换-考研信号与系统复习大全
查表法,顾名思义,就是通过查阅现成的表格来快速找到拉普拉斯逆变换的结果。这种方法基于前人已经整理好的常见拉普拉斯变换对,我们只需将待求的拉普拉斯变换式与表格中的条目进行匹配,即可直接获得其逆变换的表达式。原创 2024-07-11 10:02:10 · 427 阅读 · 0 评论