Dijkstra简述

为什么要用dijikstra?


首先分析一下最常见的三种最短路算法的情况

算法名称   时间复杂度(最好)   时间复杂度(最坏)   空间复杂度     用途
Dijkstra      O(N^2)           O(N^2)         O(N)      单源
SPFA          O(KM)(k为常数)    O(NM)          O(N)      单源
Floyd         O(N^3)           O(N^3)         O(N^2)    多源

可以知道,SPFA是比较不稳定的(比如说在NOI的归程中),SPFA算法由于它上限 O(NM)=O(VE)的时间复杂度,被卡掉的几率很大,所以我们需要Dijkstra算法。
Dijkstra的时间复杂度稳定在O(N^2),是一种非常理想的时间复杂度(重点在稳定)。

什么是dijkstra?

dijkstra是一种单源最短路径算法,时间复杂度上限为O(n^2)(朴素),在实际应用中较为稳定;加上堆优化之后更是具有O((n+m)log2n)的时间复杂度,在稠密图中有不俗的表现。
(1)求解思路——从始点出发,逐步顺序地向外探寻,每向外延伸一步都要求是最短的。
(2)使用条件——网络中所有的弧权均非负
我们把点分成两类,一类已知从始点到该标号点的最短路权的点,看为"白点"(Permanent永久性),另一类是未确定最短路径的点,看为"蓝点"(仅知从始点到该标号点的最短路权 上界 ,Temporary临时性)
dijkstra的流程如下:

  1. 初始化dis[start]=0,其余节点的dis值为无穷大.
  2. 找一个dis值最小的蓝点x,把节点x变成白点.
  3. 遍历x的所有出边(x,y,z),若dis[y]>dis[x]+z,则令dis[y]=dis[x]+z
  4. 重复2,3两步,直到所有点都成为白点…

dijkstra为什么是正确的

当所有边长都是非负数的时候,全局最小值不可能再被其他节点更新.所以在第2步中找出的蓝点x必然满足:dis[x]已经是起点到x的最短路径…我们不断选择全局最小值进行标记和拓展,最终可以得到起点到每个节点的最短路径的长度

图解:

(令start=1)

开始时我们把dis[start]初始化为0,其余点初始化为inf
在这里插入图片描述

第一轮循环找到dis值最小的点1,将1变成白点,对所有与1相连的蓝点的dis值进行修改,使得dis[2]=2,dis[3]=4,dis[4]=7
在这里插入图片描述

第二轮循环找到dis值最小的点2,将2变成白点,对所有与2相连的蓝点的dis值进行修改,使得dis[3]=3,dis[5]=4
在这里插入图片描述

第三轮循环找到dis值最小的点3,将3变成白点,对所有与2相连的蓝点的dis值进行修改,使得dis[4]=4
在这里插入图片描述

接下来两轮循环分别将4,5设为白点,算法结束,求出所有点的最短路

为什么dijkstra不能处理有负权边的情况?

我们来看下面这张图
在这里插入图片描述

2到3的边权为−4,显然从1到3的最短路径为−2 (1→2→3).但在循环开始时程序会找到当前dis值最小的点3,并标记它为白点.
这时的dis[3]=1,然而1并不是起点到3的最短路径.因为3已经被标为白点,所以dis[3]不会再被修改了.我们在边权存在负数的情况下得到了错误的答案.

dijkstra的堆优化?

这个算法和prim算法非常相似,也是不断扩展一棵树,只是prim算法每次选一个权值最小的边来扩张,本算法是选一个路径值最小的点来扩张。类似地,Dijkstra算法也可以借助堆来优化效率。
观察可以发现,步骤2可以用堆对dis数组进行维护,用O(log2n)的时间取出堆顶元素并删除,用O(log2n)遍历每条边,总复杂度O((n+m)log2n)。

#include<bits/stdc++.h>

const int MaxN = 100010, MaxM = 500010;

struct edge{
    int to, dis, next;
}e[MaxM];
int head[MaxN], dis[MaxN], cnt;
bool vis[MaxN];
int n, m, s;

inline void add_edge( int u, int v, int d )
{
    cnt++;
    e[cnt].dis = d;
    e[cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt;
}

struct node
{
    int dis;
    int pos;
    bool operator <( const node &x )const
    {
        return x.dis < dis;
    }
};

std::priority_queue<node> q;

inline void dijkstra()
{
    dis[s] = 0;
    q.push( ( node ){0, s} );
    while( !q.empty() )
    {
        node tmp = q.top();
        q.pop();
        int x = tmp.pos, d = tmp.dis;
        if( vis[x] )
            continue;
        vis[x] = 1;
        for( int i = head[x]; i; i = e[i].next )
        {
            int y = e[i].to;
            if( dis[y] > dis[x] + e[i].dis )
            {
                dis[y] = dis[x] + e[i].dis;
                if( !vis[y] )
                {
                    q.push( ( node ){dis[y], y} );
                }
            }
        }
    }
}

int main()
{
    scanf( "%d%d%d", &n, &m, &s );
    for(int i = 1; i <= n; ++i)dis[i] = 0x7fffffff;
    for( register int i = 0; i < m; ++i )
    {
        register int u, v, d;
        scanf( "%d%d%d", &u, &v, &d );
        add_edge( u, v, d );
    }
    dijkstra();
    for( int i = 1; i <= n; i++ )
        printf( "%d ", dis[i] );
    return 0;
}

后记

本文部分内容摘自李煜东《算法竞赛进阶指南》和《信息学竞赛一本通》
友情提示:正权图请使用dijkstra算法,负权图请使用SPFA算法

转自(并编辑)A simple dispiction of dijkstra.

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dijkstra算法的时间复杂度取决于具体的实现方式。在朴素的实现中,Dijkstra算法的时间复杂度上限为O(N^2),其中N是图中节点的数量。这是因为Dijkstra算法需要对每个节点进行一次松弛操作,而对于每个节点,需要遍历所有与其相邻的节点来更新最短路径。因此,如果图中有N个节点,那么总共需要进行N次松弛操作,每次松弛操作的时间复杂度为O(N)。所以,总的时间复杂度为O(N^2)。 然而,在优化后的实现中,Dijkstra算法可以通过使用堆优化来降低时间复杂度。具体来说,使用堆数据结构可以提供更快的最小值查询操作,从而减少了每次选择最小距离的时间。在这种情况下,Dijkstra算法的时间复杂度可以降低到O((NM)log2N),其中N是节点的数量,M是边的数量。这种优化对于稠密图的表现尤为明显。 综上所述,Dijkstra算法的时间复杂度在最坏情况下为O(N^2),在优化后的情况下可以降低到O((NM)log2N)。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Dijkstra简述](https://blog.csdn.net/corqna/article/details/126259604)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值