1 Dijkstra算法基本原理
Dijkstra算法是根据贪心算法实现的,首先找出当前点到所有能到达的点之间最短的距离,然后松弛一次继续循环。所谓松弛一次,就是在已经访问过的点中遍历一遍,看看有没有更近的,如果有更近的就更新距离。这样每次找最近的可达点+松弛遍历历史节点的操作,一直重复就能找到最短路径。
算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本步骤
通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。
然后,从U中找出路径最短的顶点,并将其加入到S中;
接着,更新U中的顶点和顶点对应的路径,再从U中找出路径最短的顶点,并将其加入到S中;
接着,更新U中的顶点和顶点对应的路径。
…
重复该操作,直到遍历完所有顶点。
2 算法过程图解1(有向图)
首先看一个图,目标是找到从1到6的最短距离
首先用一个6*6的二维数组存储距离信息,纵坐标为起点,横坐标为终点,对应的坐标值就是起点到终点的距离,其中,不可达点的距离为 ∞ \infty ∞,到自身的距离为0。
接着用一个一维数组来存储路径
从点1开始,遍历二维数组的第一行,发现距离1是最小的,对应点1到点2,选定点2;松弛,没有更近值;
从点2开始,遍历二维数组的第二行,发现距离3是最小的,对应点2到点4,选定点4;松弛,没有更近值;
从点4开始,遍历二维数组的第四行,发现距离4是最小的,对应点4到点3,选定点3;松弛,没有更近值;
从点3开始,遍历二维数组的第三行,发现距离5是最小的,对应点3到点5,选定点5;松弛,没有更近值;
从点5开始,遍历二维数组的第五行,发现距离4是最小的,对应点5到点6,选定点6;松弛,没有更近值;
点6,已经到达目标节点,遍历结束。
3 算法过程图解2(无向图)
注意:B(23)应该为B(13)
初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(13),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(13),F(6),G(12)}。
第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
4 C++代码
4.1 案例1代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f
using namespace std;
int map[1005][1005];
int vis[1005],dis[1005];
int n,m;//n个点,m条边
void Init ()
{
memset(map,Inf,sizeof(map));
for(int i=1;i<=n;i++)
{
map[i][i]=0;
}
}
void Getmap()
{
int u,v,w;
for(int t=1;t<=m;t++)
{
scanf("%d%d%d",&u,&v,&w);
if(map[u][v]>w)
{
map[u][v]=w;
map[v][u]=w;
}
}
}
void Dijkstra(int u)
{
memset(vis,0,sizeof(vis));
for(int t=1;t<=n;t++)
{
dis[t]=map[u][t];
}
vis[u]=1;
for(int t=1;t<n;t++)
{
int minn=Inf,temp;
for(int i=1;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
temp=i;
}
}
vis[temp]=1;
for(int i=1;i<=n;i++)
{
if(map[temp][i]+dis[temp]<dis[i])
{
dis[i]=map[temp][i]+dis[temp];
}
}
}
}
int main()
{
scanf("%d%d",&m,&n);
Init();
Getmap();
Dijkstra(n);
printf("%d\n",dis[1]);
return 0;
}
4.2 案例2邻接矩阵定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
4.3 案例2代码Dijkstra算法
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
参考文献
Dijkstra算法(一)之C语言详解
https://www.cnblogs.com/skywang12345/p/3711512.html
Dijkstra算法图文详解
https://blog.csdn.net/lbperfect123/article/details/84281300
动画理解Dijkstra算法过程
https://blog.csdn.net/jzj1993/article/details/39157055