Dijkstra算法图文详解和C++代码

1 Dijkstra算法基本原理

算法动图

Dijkstra算法是根据贪心算法实现的,首先找出当前点到所有能到达的点之间最短的距离,然后松弛一次继续循环。所谓松弛一次,就是在已经访问过的点中遍历一遍,看看有没有更近的,如果有更近的就更新距离。这样每次找最近的可达点+松弛遍历历史节点的操作,一直重复就能找到最短路径。

算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本步骤

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。

然后,从U中找出路径最短的顶点,并将其加入到S中;

接着,更新U中的顶点和顶点对应的路径,再从U中找出路径最短的顶点,并将其加入到S中;

接着,更新U中的顶点和顶点对应的路径。

重复该操作,直到遍历完所有顶点。


2 算法过程图解1(有向图)

首先看一个图,目标是找到从1到6的最短距离
在这里插入图片描述

首先用一个6*6的二维数组存储距离信息,纵坐标为起点,横坐标为终点,对应的坐标值就是起点到终点的距离,其中,不可达点的距离为 ∞ \infty ,到自身的距离为0。

在这里插入图片描述

接着用一个一维数组来存储路径

从点1开始,遍历二维数组的第一行,发现距离1是最小的,对应点1到点2,选定点2;松弛,没有更近值;

从点2开始,遍历二维数组的第二行,发现距离3是最小的,对应点2到点4,选定点4;松弛,没有更近值;

从点4开始,遍历二维数组的第四行,发现距离4是最小的,对应点4到点3,选定点3;松弛,没有更近值;

从点3开始,遍历二维数组的第三行,发现距离5是最小的,对应点3到点5,选定点5;松弛,没有更近值;

从点5开始,遍历二维数组的第五行,发现距离4是最小的,对应点5到点6,选定点6;松弛,没有更近值;

点6,已经到达目标节点,遍历结束。
在这里插入图片描述

3 算法过程图解2(无向图)

在这里插入图片描述

注意:B(23)应该为B(13)
在这里插入图片描述

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(13),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(13),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

4 C++代码

4.1 案例1代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f
 
using namespace std;
 
int map[1005][1005];
 
int vis[1005],dis[1005];
int n,m;//n个点,m条边
 
void Init ()
{
	memset(map,Inf,sizeof(map));
	for(int i=1;i<=n;i++)
	{
		map[i][i]=0;
	}
}
 
void Getmap()
{
	int u,v,w;
    for(int t=1;t<=m;t++)
	{
	  	scanf("%d%d%d",&u,&v,&w);
	  	if(map[u][v]>w)
		  {
		  map[u][v]=w;
		  map[v][u]=w;
	      }
	}	
	
}
 
void Dijkstra(int u)
{
	memset(vis,0,sizeof(vis));
	for(int t=1;t<=n;t++)
	{
		dis[t]=map[u][t];
	}
	vis[u]=1;
	for(int t=1;t<n;t++)
	{
		int minn=Inf,temp;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i]&&dis[i]<minn)
			{
				minn=dis[i];
				temp=i;
			}
		}
		vis[temp]=1;
		for(int i=1;i<=n;i++)
		{
			if(map[temp][i]+dis[temp]<dis[i])
			{
				dis[i]=map[temp][i]+dis[temp];
			}
		}
	}
	
}
 
int main()
{
	
	scanf("%d%d",&m,&n);
	Init();
	Getmap();
	Dijkstra(n);
	printf("%d\n",dis[1]);
	
	
	return 0;
}

4.2 案例2邻接矩阵定义

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

EData是邻接矩阵边对应的结构体。

4.3 案例2代码Dijkstra算法

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

    // 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

    // 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

参考文献

Dijkstra算法(一)之C语言详解
https://www.cnblogs.com/skywang12345/p/3711512.html

Dijkstra算法图文详解
https://blog.csdn.net/lbperfect123/article/details/84281300

动画理解Dijkstra算法过程
https://blog.csdn.net/jzj1993/article/details/39157055

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页