【LOJ】#114. k 大异或和 -线性基&贪心

传送门:loj114


题解

注意构造的线性基 a i a_i ai需要满足:若第 i , j i,j i,j位上都有值,则 a i & 2 j = 0 a_i\&2^j=0 ai&2j=0 a j & i = 0 a_j\&i=0 aj&i=0,这样从高位到低位贪心才满足只决策了当前位。

需要特判非空子集中是否存在0


代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;

int n,m,cnt;
ll bin[55],a[N],q,ans;

inline void ins(ll x)
{
	int i,j;
	for(i=50;(~i)&&x;--i)
	 if(x&bin[i]){
	    if(!a[i]){
	    	cnt++;a[i]=x;
	    	for(j=i-1;~j;--j) if(a[i]&bin[j]) a[i]^=a[j];
	    	for(j=i+1;j<=50;++j) if(a[j]&bin[i]) a[j]^=a[i];
	    	break;
	    }
	    x^=a[i];
	 }
}

inline ll sol(ll x)
{
	if(x>bin[cnt]) return -1LL;
	if(cnt==n) x++;//
	ans=0LL;int i,re=cnt-1;
	for(i=50;~i;--i) if(a[i]){
		if(x>bin[re]){ans^=a[i];x-=bin[re];}
		re--;
	}
    return ans;
}

int main(){
	int i,j;ll x;
	bin[0]=1LL;for(i=1;i<=51;++i) bin[i]=bin[i-1]<<1;
	scanf("%d",&n);
	for(i=1;i<=n;++i) {scanf("%lld",&x);ins(x);}
	for(scanf("%d",&m);m;--m){
		scanf("%lld",&q);
		printf("%lld\n",sol(q));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值