欧拉准则
对于质数 p p p, x 2 ≡ a ( m o d p ) ⇔ a p − 1 2 ≡ 1 ( m o d p ) x^2\equiv a\pmod p\Leftrightarrow a^{\frac{p-1}{2}}\equiv 1\pmod p x2≡a(modp)⇔a2p−1≡1(modp)。
证明:
充分性:
a p − 1 2 = ( x 2 ) p − 1 2 = x p − 1 ≡ 1 ( m o d p ) a^{\frac{p-1}{2}}=(x^2)^{\frac{p-1}{2}}=x^{p-1}\equiv 1\pmod p a2p−1=(x2)2p−1=xp−1≡1(modp)
必要性:
设 g g g为模 p p p意义下的原根, g i ≡ a ( m o d p ) g^i\equiv a\pmod p gi≡a(modp),则
g i ( p − 1 ) 2 ≡ 1 ( m o d p ) g^{\frac{i(p-1)}{2}}\equiv 1\pmod p g2i(p−1)≡1(modp)
g g g为原根,则 ( p − 1 ) ∣ i ( p − 1 ) 2 (p-1)|\frac{i(p-1)}{2} (p−1)∣2i(p−1), i i i为偶数, x ≡ g i 2 ( m o d p ) x\equiv g^{\frac i2}\pmod p x≡g2i(modp)
Cipolla算法
一种求解模奇质数意义下的二次同余方程的算法。
即 p p p为奇质数,给定 a a a,求 x x x满足: x 2 ≡ a ( m o d p ) x^2\equiv a\pmod p x2≡a(modp)
复杂度 O ( log p ) O(\log p)