【模板】二次剩余Cipolla算法/欧拉准则-bzoj5104: Fib数列

本文介绍了欧拉准则及其证明,详细阐述了Cipolla算法用于解决模奇质数意义下的二次同余方程,并通过实例解析算法应用。此外,还提供了针对bzoj5104题目的解题思路,利用Fib数列的通项公式进行求解,并给出代码实现。
摘要由CSDN通过智能技术生成

欧拉准则

对于质数 p p p x 2 ≡ a ( m o d p ) ⇔ a p − 1 2 ≡ 1 ( m o d p ) x^2\equiv a\pmod p\Leftrightarrow a^{\frac{p-1}{2}}\equiv 1\pmod p x2a(modp)a2p11(modp)

证明:

充分性:
a p − 1 2 = ( x 2 ) p − 1 2 = x p − 1 ≡ 1 ( m o d p ) a^{\frac{p-1}{2}}=(x^2)^{\frac{p-1}{2}}=x^{p-1}\equiv 1\pmod p a2p1=(x2)2p1=xp11(modp)

必要性:
g g g为模 p p p意义下的原根, g i ≡ a ( m o d p ) g^i\equiv a\pmod p gia(modp),则
g i ( p − 1 ) 2 ≡ 1 ( m o d p ) g^{\frac{i(p-1)}{2}}\equiv 1\pmod p g2i(p1)1(modp)
g g g为原根,则 ( p − 1 ) ∣ i ( p − 1 ) 2 (p-1)|\frac{i(p-1)}{2} (p1)2i(p1) i i i为偶数, x ≡ g i 2 ( m o d p ) x\equiv g^{\frac i2}\pmod p xg2i(modp)


Cipolla算法

一种求解模奇质数意义下的二次同余方程的算法。

p p p为奇质数,给定 a a a,求 x x x满足: x 2 ≡ a ( m o d p ) x^2\equiv a\pmod p x2a(modp)

复杂度 O ( log ⁡ p ) O(\log p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值