【洛谷】P5162 WD与积木-生成函数&多项式求逆

传送门:luoguP5162


题解

斯特林数复杂度降不下去(生成函数是关于总层数的),考虑枚举第一堆/层大小进行 d p dp dp( g n , f n g_n,f_n gn,fn分别表示 n n n块积木堆叠方案数, n n n块积木堆叠的所有方案的总层数):
g n = ∑ i = 1 n ( n i ) g n − i f n = g n + ∑ i = 1 n ( n i ) f n − i g_n=\sum_{i=1}^n{n\choose i}g_{n-i}\\f_n=g_n+\sum_{i=1}^n{n\choose i}f_{n-i} gn=i=1n(in)gnifn=gn+i=1n(in)fni

F ( x ) = ∑ 0 ∞ f i i ! x i , G ( x ) = ∑ 0 ∞ g i i ! x i , H ( x ) = ∑ 0 ∞ 1 i ! x i F(x)=\sum\limits_{0}^{\infty}\dfrac{f_i}{i!}x^i,G(x)=\sum\limits_{0}^{\infty}\dfrac{g_i}{i!}x^i,H(x)=\sum\limits_{0}^{\infty}\dfrac{1}{i!}x^i F(x)=0i!fixi,G(x)=0i!gixi,H(x)=0i!1xi

d p dp dp式子转成生成函数:
G = H ∗ G − G + 1 F = G + H ∗ F − F − 1 G=H*G-G+1\\F=G+H*F-F-1 G=HGG+1F=G+HFF1
G = 1 2 − H , F = G ( G − 1 ) G=\dfrac{1}{2-H},F=G(G-1) G=2H1,F=G(G1)

多项式求逆即可。


代码

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N=1e6+10,mod=998244353,M=1e5,gen=3;

int tk,n,f[N],g[N],h[N],ivg;
int rv[N],L,len;

char cp;
inline int rd()
{
	int x=0;cp=getchar();
	for(;!isdigit(cp);cp=getchar());
	for(;isdigit(cp);cp=getchar()) x=x*10+(cp^48);
	return x;
}

inline void ad(int &x,int y){x+=y;if(x>=mod) x-=mod;}
inline int adi(int x,int y){x+=y;return x>=mod?x-mod:x;}
inline int dci(int x,int y){x-=y;return x<0?x+mod:x;}

inline int fp(int x,int y)
{
	int re=1;
	for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) re=(ll)re*x%mod;
	return re;
}

inline void init(int n)
{
	for(L=0,len=1;len<=n;len<<=1) L++;
	for(int i=0;i<len;++i) rv[i]=(rv[i>>1]>>1)|((i&1)<<(L-1));
}

inline void ntt(int *e,int pr)
{
	int i,j,k,x,y,pd,ori,G=pr?gen:ivg;
	for(i=1;i<len;++i) if(i<rv[i]) swap(e[i],e[rv[i]]);
	for(i=1;i<len;i<<=1){
		ori=fp(G,(mod-1)/(i<<1));
		for(j=0;j<len;j+=(i<<1)){
			for(pd=1,k=0;k<i;++k,pd=(ll)pd*ori%mod){
				x=e[j+k];y=(ll)pd*e[i+j+k]%mod;
				e[j+k]=adi(x,y);e[i+j+k]=dci(x,y);
			}
		}
	}
	if(pr) return;
	G=fp(len,mod-2);
	for(i=0;i<len;++i) e[i]=(ll)e[i]*G%mod;
}

void gtinv(int n,int *f,int *g)
{
	if(n==1) {f[0]=fp(g[0],mod-2);return;}
	gtinv((n+1)>>1,f,g);init((n<<1)-1);
	static int i,rp[N];
	for(i=0;i<n;++i) rp[i]=g[i];
	for(i=n;i<len;++i) rp[i]=0;
	ntt(f,1);ntt(rp,1);
	for(i=0;i<len;++i) f[i]=(ll)f[i]*dci(2,(ll)rp[i]*f[i]%mod)%mod;
	ntt(f,0);for(i=n;i<len;++i) f[i]=0;
}

int main(){
	int i,n;h[0]=h[1]=1;ivg=fp(gen,mod-2);
	for(i=2;i<=M;++i) h[i]=(ll)(mod-mod/i)*h[mod%i]%mod;
	for(i=2;i<=M;++i) h[i]=(ll)h[i]*h[i-1]%mod; 
	for(i=0;i<=M;++i) h[i]=h[i]?mod-h[i]:0;h[0]=1;
	gtinv(M+1,g,h);init(M<<1);
	memcpy(h,g,sizeof(h));memcpy(f,g,sizeof(f));f[0]=dci(f[0],1);
	ntt(h,1);ntt(f,1);
	for(i=0;i<len;++i) f[i]=(ll)f[i]*h[i]%mod;
	ntt(f,0);
	for(i=1;i<=M;++i) f[i]=(ll)f[i]*fp(g[i],mod-2)%mod;	
	for(tk=rd();tk;--tk) printf("%d\n",f[rd()]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路1(洛谷题解) 设n维球体为α,其半径为r(注意,这是一个设而不求。),其球心X的坐标为(x_1,x_2,…,x_n )。∀A_1,A_2,…,A_(n+1)∈α,点A_i (1≤i≤n+1)坐标为(a_((i,1) ),a_((i,2) ),…,a_((i,n) ) )。由n维球体的定义,得方程组: {█((a_((1,1) )-x_1 )^2+(a_((1,2) )-x_2 )^2+⋯+(a_((1,n) )-x_n )^2=r^2@(a_((2,1) )-x_1 )^2+(a_((2,2) )-x_2 )^2+⋯+(a_((2,n) )-x_n )^2=r^2@⋮@(a_((n+1,1) )-x_1 )^2+(a_((n+1,2) )-x_2 )^2+⋯+(a_((n+1,n) )-x_n )^2=r^2 )┤. 从上往下,将第1个方程与第2个方程相减,将第2个方程与第3个方程相减,……,将第n个方程与第(n+1)个方程相减,得: {█(∑_(i=1)^n▒2(a_((1,i) )-a_((2,i) ) ) x_i=∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @∑_(i=1)^n▒2(a_((2,i) )-a_((3,i) ) ) x_i=∑_(i=1)^n▒(a_((2,i) )+a_((3,i) ) )(a_((2,i) )-a_((3,i) ) ) @⋮@∑_(i=1)^n▒2(a_((n,i) )-a_((n+1,i) ) ) x_i=∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n,i) ) ) )┤. 这是一个线性方程组,其增广矩阵为[■(2(a_((1,1) )-a_((2,1) ) )&⋯&2(a_((1,n) )-a_((2,n) ) )&∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @⋮&⋱&⋮&⋮@2(a_((n,1) )-a_((n+1,1) ) )&⋯&2(a_((n,n) )-a_((n+1,n) ) )&∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n+1,i) ) ) )],可用列主元高斯消元法求得其解。 思路2 n(n∈N_+ )维空间中到两个互不重合的点的距离相等的点的集合叫做这两个点的垂直平分图形。 求n维空间中两点的垂直平分图形的方程的基本思路: 设点A坐标为(a_1,a_2,…,a_n ),点B的坐标为(b_1,b_2,…,b_n ),A≠B,它们的垂直平分图形为β。取∀X∈β,其坐标为(x_1,x_2,…,x_n )。 由垂直平分图形的意义,得: |AX|=|BX|⇔|AX|^2=|BX|^2⇔∑_(i=1)^n▒(a_i-x_i )^2 =∑_(i=1)^n▒(b_i-x_i )^2 ⇔(∑_(i=1)^n▒〖a_i〗^2 )-2(∑_(i=1)^n▒〖a_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )=(∑_(i=1)^n▒〖b_i〗^2 )-2(∑_(i=1)^n▒〖b_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )⇔∑_(i=1)^n▒〖2(a_i-b_i ) x_i 〗=∑_(i=1)^n▒(a_i+b_i )(a_i-b_i ) . 最后出来的这个等式就是垂直平分图形的方程。 回到题目中,对于∀A_1,A_2,…,A_(n+1)∈α,取A_1,A_2为一对,A_2,A_3为一对,……,A_n,A_(n+1)为一对代入垂直平分图形的方程中,惊奇地发现得到的线性方程组与思路1中相同,接下来的解法也相同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值