【Atcoder】AGC031 C-F简要题解

这篇博客详细介绍了Atcoder AGC031竞赛中的四道题目,包括C题通过异或操作构造解法,D题通过抽象代数解决序列排列问题,E题运用神仙费用流策略,以及F题通过图论分析找到解题路径。每道题目都深入探讨了解题思路和代码实现。
摘要由CSDN通过智能技术生成

这一场涉及了很多我不熟悉的技巧,都是神仙题


*C.Differ by 1 Bit

考试的时候想了好久

A → B A\to B AB的过程等价于 0 → A   x o r   B 0\to A\ xor \ B 0A xor B,考虑如何判断 0 → X 0\to X 0X是否可行

归纳位数 w w w构造:

  • 初始 w = 1 w=1 w=1 0 → 1 0\to 1 01
  • 对于 w > 1 w>1 w>1,固定 X X X中为 1 1 1的一位 b b b,剩下的 w − 1 w-1 w1位在前 2 w − 1 − 1 2^{w-1}-1 2w11次操作后变成某个数(这个过程中保持 b = 0 b=0 b=0),下一步 b : = 1 b:=1 b:=1,然后在后 2 w − 1 − 1 2^{w-1}-1 2w11次剩下的 w − 1 w-1 w1位又可以倒序执行前面的操作得到 0 0 0。最终可以得到一个只有 b b b这位为1的数。
    考虑归纳这个过程,剩余 w − 1 w-1 w1位最终必然得到了偶数个 1 1 1
    • 0 → 1 → 0 0\to 1\to 0 010得到 0 0 0 1 1 1 w = 2 w=2 w=2时成立
    • 设已知 w − 1 w-1 w1位时成立,则前 2 w − 1 − 1 2^{w-1}-1 2w11次操作除 b b b位一定能得到奇数个 1 1 1,后 2 w − 1 − 1 2^{w-1}-1 2w11次操作相当于这个有奇数个1的数异或上另一个有奇数个1的数,必然得到偶数个1,成立。。
  • 所以任意 X X X有奇数个 1 1 1的情况都可以递归构造出解。

详见代码

#include<bits/stdc++.h>
#define RI register
using namespace std;
const int N=(1<<17)+10,mod=1e9+7;
typedef long long ll;

int n,A,B,bs;
int bel[N],tim;
int ans[N],cnt,S;
bool vs[N];

inline int cont(int x)
{
   
	int re=0,i;
	for(i=0;i<n;++i) if((x>>i)&1) re++;
	return re;
}

vector<int> cal(int t,int x)
{
   
	vector<int>re;re.resize((1<<t));
	if(t==1){
   re[1]=1;return re;}
	int pos,i;
	for(i=0;i<t;++i) if((x>>i)&1) {
   pos=i;break;}
	vector<int>nw;
	nw=cal(t-1,1);
	for(i=0;i<(1<<(t-1));++i) re[i]=(((nw[i]>>pos)<<(pos+1))|(nw[i]&((1<<pos)-1)));
	nw=cal(t-1,(((x>>(pos+1))<<pos)|(x&((1<<pos)-1)))^1);
	for(i=0;i<(1<<(t-1));++i){
   
		if(pos>0) re[i+(1<<(t-1))]=1^((1<<pos)|((nw[i]>>(pos))<<(pos+1))|(nw[i]&((1<<pos)-1)));
		else re[i+(1<<(t-1))]=1|((nw[i]^1)<<1);
	}
	return re;
}

int main(){
   
	int i,j,x,y;
	scanf("%d%d%d",&n,&A,&B);
	S=(1<<n);bs=A;B^=A;
	if(cont(B)%2==0) {
   puts("NO");return 0;}
	puts("YES");
	vector<int> as=cal(n,B);
	for(i=0;i<S;++i) printf("%d ",as[i]^A);
	return 0;
}


**D.A Sequence of Permutations

抽象代数一脸懵,真是伤脑筋(竟以为自己能找出规律,too young too naive)

设存在排列 p , q , t p,q,t p,q,t,定义置换运算乘法: t = p q t=pq t=pq,则 t i = p q i t_i=p_{q_i} ti=pqi g = p − 1 g=p^{-1} g=p1表示 p p p的逆变换, g p i = i g_{p_i}=i gpi=i,存在性质 ( p q ) − 1 = q − 1 p − 1 , p p − 1 = ( 1 ) (pq)^{-1}=q^{-1}p^{-1},pp^{-1}=(1) (pq)1=q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值