这一场涉及了很多我不熟悉的技巧,都是神仙题
*C.Differ by 1 Bit
考试的时候想了好久
A → B A\to B A→B的过程等价于 0 → A x o r B 0\to A\ xor \ B 0→A xor B,考虑如何判断 0 → X 0\to X 0→X是否可行
归纳位数 w w w构造:
- 初始 w = 1 w=1 w=1, 0 → 1 0\to 1 0→1
- 对于 w > 1 w>1 w>1,固定 X X X中为 1 1 1的一位 b b b,剩下的 w − 1 w-1 w−1位在前 2 w − 1 − 1 2^{w-1}-1 2w−1−1次操作后变成某个数(这个过程中保持 b = 0 b=0 b=0),下一步 b : = 1 b:=1 b:=1,然后在后 2 w − 1 − 1 2^{w-1}-1 2w−1−1次剩下的 w − 1 w-1 w−1位又可以倒序执行前面的操作得到 0 0 0。最终可以得到一个只有 b b b这位为1的数。
考虑归纳这个过程,剩余 w − 1 w-1 w−1位最终必然得到了偶数个 1 1 1:- 0 → 1 → 0 0\to 1\to 0 0→1→0得到 0 0 0个 1 1 1, w = 2 w=2 w=2时成立
- 设已知 w − 1 w-1 w−1位时成立,则前 2 w − 1 − 1 2^{w-1}-1 2w−1−1次操作除 b b b位一定能得到奇数个 1 1 1,后 2 w − 1 − 1 2^{w-1}-1 2w−1−1次操作相当于这个有奇数个1的数异或上另一个有奇数个1的数,必然得到偶数个1,成立。。
- 所以任意 X X X有奇数个 1 1 1的情况都可以递归构造出解。
详见代码
#include<bits/stdc++.h>
#define RI register
using namespace std;
const int N=(1<<17)+10,mod=1e9+7;
typedef long long ll;
int n,A,B,bs;
int bel[N],tim;
int ans[N],cnt,S;
bool vs[N];
inline int cont(int x)
{
int re=0,i;
for(i=0;i<n;++i) if((x>>i)&1) re++;
return re;
}
vector<int> cal(int t,int x)
{
vector<int>re;re.resize((1<<t));
if(t==1){
re[1]=1;return re;}
int pos,i;
for(i=0;i<t;++i) if((x>>i)&1) {
pos=i;break;}
vector<int>nw;
nw=cal(t-1,1);
for(i=0;i<(1<<(t-1));++i) re[i]=(((nw[i]>>pos)<<(pos+1))|(nw[i]&((1<<pos)-1)));
nw=cal(t-1,(((x>>(pos+1))<<pos)|(x&((1<<pos)-1)))^1);
for(i=0;i<(1<<(t-1));++i){
if(pos>0) re[i+(1<<(t-1))]=1^((1<<pos)|((nw[i]>>(pos))<<(pos+1))|(nw[i]&((1<<pos)-1)));
else re[i+(1<<(t-1))]=1|((nw[i]^1)<<1);
}
return re;
}
int main(){
int i,j,x,y;
scanf("%d%d%d",&n,&A,&B);
S=(1<<n);bs=A;B^=A;
if(cont(B)%2==0) {
puts("NO");return 0;}
puts("YES");
vector<int> as=cal(n,B);
for(i=0;i<S;++i) printf("%d ",as[i]^A);
return 0;
}
**D.A Sequence of Permutations
抽象代数一脸懵,真是伤脑筋(竟以为自己能找出规律,too young too naive)
设存在排列 p , q , t p,q,t p,q,t,定义置换运算乘法: t = p q t=pq t=pq,则 t i = p q i t_i=p_{q_i} ti=pqi, g = p − 1 g=p^{-1} g=p−1表示 p p p的逆变换, g p i = i g_{p_i}=i gpi=i,存在性质 ( p q ) − 1 = q − 1 p − 1 , p p − 1 = ( 1 ) (pq)^{-1}=q^{-1}p^{-1},pp^{-1}=(1) (pq)−1=q