KTU Programming Camp (Day 2) Problem F. Sequence of words 后缀数组+线段树

  • 题意
    • 题目链接
    • 给一个字符串S,给q个询问,每个询问包含L和K,求原字符串长度为L的字串中字典序排在第K位的起始位置。
  • 题解
    • 首先处理出sa数组,然后将询问离线,按照L从大到小的顺序访问,将 rnk[0]...rnk[nL] 加入线段树中,查询排在第k位的rnk值,利用sa即可查到起始位置。
  • 代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <bitset>
//#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

#define ll long long
#define SZ(x) ((int)(x).size()) 
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i) 
#define REP(i,a,n) for ( int i=a; i<int(n); i++ )
#define FOR(i,a,n) for ( int i=n-1; i>= int(a);i-- )
#define lson rt<<1, L, m
#define rson rt<<1|1, m, R
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define fi first
#define se second
#define CLR(a, b) memset(a, b, sizeof(a))
#define Max(a, b) a = max(a, b)
#define Min(a, b) b = min(a, b)

/*
*suffix array
*倍增算法 O(n*logn)
*待排序数组长度为n,放在0~n-1中,在最后面补一个0
*da(str ,n+1,sa,rank,height, ,
);//注意是n+1;
*例如:
*n = 8;
*num[] = { 1, 1, 2, 1, 1, 1, 1, 2, $ };注意num最后一位为0,其他大于0
9 / 173
ACM 模板
kuangbin上海大学 ACM 模板 by kuangbin
*rank[] = { 4, 6, 8, 1, 2, 3, 5, 7, 0 };rank[0~n-1]为有效值,rank[n]必定为0无效
值
*sa[]
= { 8, 3, 4, 5, 0, 6, 1, 7, 2 };sa[1~n]为有效值,sa[0]必定为n是无效值
*height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值
*
*/
const int MAXN=1e5 + 7;
int t1[MAXN],t2[MAXN],c[MAXN];//求SA数组需要的中间变量,不需要赋值
//待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m,
//除s[n-1]外的所有s[i]都大于0,r[n-1]=0
//函数结束以后结果放在sa数组中
bool cmp(int *r,int a,int b,int l)
{
return r[a] == r[b] && r[a+l] == r[b+l];
}
void da(int str[],int sa[],int rank[],int height[],int n,int m)
{
n++;
int i, j, p, *x = t1, *y = t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i = 0;i < m;i++)c[i] = 0;
for(i = 0;i < n;i++)c[x[i] = str[i]]++;
for(i = 1;i < m;i++)c[i] += c[i-1];
for(i = n-1;i >= 0;i--)sa[--c[x[i]]] = i;
for(j = 1;j <= n; j <<= 1)
{
p = 0;
//直接利用sa数组排序第二关键字
for(i = n-j; i < n; i++)y[p++] = i;//后面的j个数第二关键字为空的最小
for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i = 0; i < m; i++)c[i] = 0;
for(i = 0; i < n; i++)c[x[y[i]]]++;
for(i = 1; i < m;i++)c[i] += c[i-1];
for(i = n-1; i >= 0;i--)sa[--c[x[y[i]]]] = y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p = 1; x[sa[0]] = 0;
for(i = 1;i < n;i++)
x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++;
if(p >= n)break;
m = p;//下次基数排序的最大值
}
int k = 0;
n--;
for(i = 0;i <= n;i++)rank[sa[i]] = i;
for(i = 0;i < n;i++)
{
if(k)k--;
j = sa[rank[i]-1];
while(str[i+k] == str[j+k])k++;
height[rank[i]] = k;
}
}
int rnk[MAXN], height[MAXN];
int RMQ[MAXN];
int mm[MAXN];
int best[20][MAXN];
char str[MAXN];
int r[MAXN];
int sa[MAXN];

pair<pii, int> qur[MAXN];
int ans[MAXN];
int segt[MAXN << 2];

void update(int rt, int L, int R, int idd){
    if(L + 1 == R){ segt[rt] = 1; return ;}
    int m = (L + R) >> 1;
    if(idd < m) update(lson, idd);
    else update(rson, idd);
    int lc = rt << 1, rc = rt << 1 | 1;
    segt[rt] = segt[lc] + segt[rc];
    //printf("l = %d, r = %d, segt = %d\n", L, R, segt[rt]);
}
int query(int rt, int L, int R, int k){
    if(L + 1 == R) return L;
    int m = (L + R) >> 1;
    int lc = rt << 1, rc = rt << 1 | 1;
    if(k <= segt[lc]) return query(lson, k);
    else return query(rson, k - segt[lc]);
}
int main(){
#ifdef ac
    freopen("in.txt","r",stdin);
#endif
    //freopen("out.txt","w",stdout);
    scanf("%s", str);
    int n = strlen(str);
    REP(i, 0, n + 1) r[i] = str[i];
    da(r, sa, rnk, height, n, 128);
    int q;
    scanf("%d", &q);
    REP(i, 0, q) scanf("%d%d", &qur[i].fi.fi, &qur[i].fi.se), qur[i].se = i;
    sort(qur, qur + q);
    int pos = 0;
    FOR(i, 0, q){
        int len = qur[i].fi.fi;
        int k = qur[i].fi.se;
        while(pos <= n - len){
            //printf("pos = %d, rnk = %d, sa = %d\n", pos, rnk[pos], sa[rnk[pos]]);
            update(1, 1, n + 1, rnk[pos]);
            pos ++;
        }
        ans[qur[i].se] = query(1, 1, n + 1, k);
    }
    REP(i, 0, q) printf("%d\n", sa[ans[i]] + 1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值