树的建立与基本操作

程序的输入是一个表示树结构的广义表。假设树的根为 root ,其子树森林 F = ( T1 , T2 , … , Tn ),设与该树对应的广义表为 L ,则 L =(原子,子表 1 ,子表 2 , … ,子表 n ),其中原子对应 root ,子表 i ( 1<i<=n )对应 Ti 。例如:广义表 (a,(b,(c),(d)),(f,(g),(h ),(i))) 表示的树如图所示:

程序的输出为树的层次结构、树的度以及各种度的结点个数。

在输出树的层次结构时,先输出根结点,然后依次输出各个子树,每个子树向里缩进 4 个空格,如:针对上图表示的树,输出的内容应为:

a

    b

        c

        d

    f

        g

        h

        i

Degree of tree: 3

Number of nodes of degree 0: 5

Number of nodes of degree 1: 0

Number of nodes of degree 2: 2

Number of nodes of degree 3: 1

例: (下面的黑体为输入)

(a,(b),(c,(d),(e,(g),(h )),(f)))

a

    b

    c

        d

        e

            g

            h

        f

Degree of tree: 3

Number of nodes of degree 0: 5

Number of nodes of degree 1: 0

Number of nodes of degree 2: 2

Number of nodes of degree 3: 1

测试输入期待的输出时间限制内存限制额外进程
测试用例 1以文本方式显示
  1. (a,(b),(c,(d),(e,(g),(h)),(f)))↵
以文本方式显示
  1. a↵
  2.     b↵
  3.     c↵
  4.         d↵
  5.         e↵
  6.             g↵
  7.             h↵
  8.         f↵
  9. Degree of tree: 3↵
  10. Number of nodes of degree 0: 5↵
  11. Number of nodes of degree 1: 0↵
  12. Number of nodes of degree 2: 2↵
  13. Number of nodes of degree 3: 1↵
1秒64M0
测试用例 2以文本方式显示
  1. (a,(b,(c,(d),(e)),(f)),(g,(h),(i)),(j,(k,(m),(n),(o),(p,(r)))))↵
以文本方式显示
  1. a↵
  2.     b↵
  3.         c↵
  4.             d↵
  5.             e↵
  6.         f↵
  7.     g↵
  8.         h↵
  9.         i↵
  10.     j↵
  11.         k↵
  12.             m↵
  13.             n↵
  14.             o↵
  15.             p↵
  16.                 r↵
  17. Degree of tree: 4↵
  18. Number of nodes of degree 0: 9↵
  19. Number of nodes of degree 1: 2↵
  20. Number of nodes of degree 2: 3↵
  21. Number of nodes of degree 3: 1↵
  22. Number of nodes of degree 4: 1↵
1秒64M0
测试用例 3以文本方式显示
  1. (a,(b),(c),(d,(m),(n)),(e,(o)),(f),(h))↵
以文本方式显示
  1. a↵
  2.     b↵
  3.     c↵
  4.     d↵
  5.         m↵
  6.         n↵
  7.     e↵
  8.         o↵
  9.     f↵
  10.     h↵
  11. Degree of tree: 6↵
  12. Number of nodes of degree 0: 7↵
  13. Number of nodes of degree 1: 1↵
  14. Number of nodes of degree 2: 1↵
  15. Number of nodes of degree 3: 0↵
  16. Number of nodes of degree 4: 0↵
  17. Number of nodes of degree 5: 0↵
  18. Number of nodes of degree 6: 1↵
1秒64M0
#include <stdio.h>
#define MAX 100
char data[MAX];                    // 输入数据
int level[MAX];                    // 数据层级
int dataAmount = 0, maxDegree = 0; // 数据数量,度最大值
int degreeCount[MAX] = {0};        // 记录每个节点的度数
void readInput() // 逐个读取字符,处理不同字符
{
    char c;
    int depth = -1; // 可以当做一个标号,给数组的每个元素标上层级号
    while ((c = getchar()) != '\n')
    {
        switch (c)
        {
        case '(':
            depth++;
            break;
        case ')':
            depth--;
            break;
        case ',':
            break;
        default:
            dataAmount++;
            data[dataAmount] = c;
            level[dataAmount] = depth;
            break;
        }
    }
}

int main()
{
    readInput();
    for (int i = 1; i <= dataAmount; i++) // 获取每个节点的层级并存入degreeCount
    {
        printf("%*s%c\n", level[i] * 4, "", data[i]);                    // 根据层级进行Tab
        for (int j = i + 1; j <= dataAmount && level[j] > level[i]; j++) // 遍历当前节点i后面的节点j,若j的层级比i的层级大1,则将i的度数加1。
            if (level[j] == level[i] + 1)
                degreeCount[i]++;
        if (degreeCount[i] > maxDegree)
            maxDegree = degreeCount[i];
    }
    printf("Degree of tree: %d\n", maxDegree);
    for (int i = 0; i <= maxDegree; i++)
    {
        int count = 0;
        for (int j = 1; j <= dataAmount; j++)
            if (degreeCount[j] == i)
                count++;
        printf("Number of nodes of degree %d: %d\n", i, count);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值