数论基础 线性筛 质因数分解 大素数判定...

gcd

ll gcd(ll a, ll b){
	return b == 0 ? a : gcd(b, a % b);
}

a > b a>b a>b g c d ( a , b ) = g c d ( a − b , b ) gcd(a,b)=gcd(a-b,b) gcd(a,b)=gcd(ab,b)

质因数分解

适用于需要对 1 0 7 10^7 107 范围内,需要进行质因数分解的数比较多的情况
分解的核心其实不是预处理,预处理也可以用线性筛筛出每个数的最小质数,主要是用 w h i l e while while 不断的把质数分解掉存起来

int f[maxn];// f[i]表示i中的最大质因数
// 而线性筛中处理时,可以用f[i]表示i中的最小质因子,因为筛法用的就是最小质因数筛出
void init() {
	mem(f, -1);
	for(int i = 2; i <= maxn - 9; ++i) {
	// 预处理调和级数的复杂度,本地预处理1e7只需要0.3s
		if(f[i] == -1) {
			for(int j = i; j <= maxn - 9; j += i) {
				f[j] = i;
			}
		}
	}
}
void work(){
	vector <int> v;// dif的质因子,以未去重的形式存储
	while(dif != 1) {
		v.push_back(f[dif]);
		dif /= f[dif];
	}
	// 数量超过1e5后,数量再增加,进行排序去重的步骤会慢的比较明显
	sort(all(v));
	v.erase(unique(all(v)), v.end());// 排序后去重
}

素数筛法

虽然线性筛有时候挺还好用,但是也不能忽略了埃氏筛

for(int i = 2; i <= sqrt(n); ++i)
{
	if(n % i == 0)
	{
		...
	}
	...
}

在筛的过程中可以进行一些操作
当然线性筛也可以

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const ll Max = 1e6+1;
ll p[Max];
ll v[Max];
ll cnt;
int intt()//这个不超时
{
	for(int i = 2; i < Max; i++)
	{
		if(!v[i]) p[cnt++] = i;
		for(int j = 0;  p[j]*i < Max; j++)
		{
			if(i*p[j] < Max) v[i*p[j]] = 1;
			if(i % p[j] == 0) break;
		}
	}
}

int intt()//1e5以上的打表很慢
{
	for(int i = 2; i < Max; i++)
	{
		if(!v[i]) p[cnt++] = i;
		for(int j = 0;  j < cnt; j++)
		{
			if(i*p[j] < Max) v[i*p[j]] = 1;
			if(i % p[j] == 0) break;
		}
	}
}

漂亮数
灵活使用线性筛

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e8 + 9;
const int mod = 1e9 + 7;
ll n, m, k,s;
vector <int> p;
int v[maxn], cnt;
int sum[maxn];
void xxs()
{
	for(int i = 2; i <= maxn - 9; i++)
	{
		if(!v[i]) p.push_back(i), ++cnt;
		for(int j = 0;  i * p[j] <= (maxn-9) && j < cnt; j++)
		{
			v[1ll * i * p[j]] = 1;
			if(!v[i]) sum[i * p[j]] = 1;
			if(i % p[j] == 0) break;	
		}
	}
}
void work()
{
	cin >> n;
	while(n--)
	{
		int l, r;
		cin >> l >> r;
		cout << sum[r] - sum[l-1] << endl;
	}
}

int main()
{
	xxs();
	for(int i = 1; i <= (int)1e8; ++i)
		sum[i] = sum[i] + sum[i-1];
    ios_base::sync_with_stdio(0);
    //int tt = 1;cin >> tt;while(tt--) 
    work();
    return 0;
}

Miller−Rabin 素数判定法

素数回文
板子

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 2e5 + 9;

const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;

// Miller_Rabin 算法进行素数测试可以判断 <2^63的数
const int mod = 1e9 + 7;
const int S = 20;//随机算法判定次数,S越大,判错概率越小

//非常优秀的 O(1) 的快速乘 
ll ksc (ll x, ll y, ll p){    //返回(x * y) mod p, x, y, p < 2^63
	ll z = (ld)x / p * y;
	ll res = (ull)x * y - (ull)z * p;
	return (res + p) % p;
}

//计算  x^n %c
ll qpow (ll x, ll n, ll mod, ll ans = 1){
    while(n)
    {
    	if(n & 1) ans = ksc(ans, x, mod);
    	n >>= 1;
    	x = ksc(x, x, mod);
	}
	return ans;
}

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool Check (ll a, ll n, ll x, ll t){
    ll ret = qpow(a, x, n);
    ll last = ret;
    for (int i = 1; i <= t; i++)
	{
        ret = ksc(ret, ret, n);
        if(ret == 1 && last != 1 && last != n - 1) return true; //合数
        last = ret;
    }
    if (ret !=1 ) return true;
    return false;
}


//素数判定直接调用的函数
//是素数返回true(可能是伪素数,但概率极小),合数返回false
bool check (ll n){
	if (n < 2 || (n & 1) == 0) return false;//偶数
    if (n == 2 || n == 3 || n == 5) return true;
    ll x = n - 1;
    ll t = 0;
    while ( (x & 1) == 0) x >>= 1, t++;
    for (int i = 0; i < S; i++)
	{
        ll a = rand() % (n - 1) + 1; //rand()需要stdlib.h头文件
        if (Check(a, n, x, t))
            return false;//合数
    }
    return true;
}

void work()
{
	string s;cin >> s;
	string t = s;
	for(int i = s.size() - 2; i >= 0; --i)
			t += s[i];
	ll x = 0;
	for(int i = 0; i < t.size(); ++i)
		x = x * 10 + (t[i] - '0');
	if(check(x)) cout << "prime";
	else cout << "noprime";
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

算法竞赛进阶指南
在这里插入图片描述

在这里插入图片描述
对于含有 p² 的因子的个数加的 [N/p] 个,本来两个因子应该被计两次数,但是至少一个因子时计过了这部分数,因此不用乘2,后边的依次。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值