线性筛法求质因数

线性筛法是一种在线性时间复杂度内找出素数的高效算法。其核心在于每个数只被最小质因子筛,从而优于埃氏筛。代码示例展示了如何使用线性筛法筛素数,通过遍历并标记合数,找到每个数的最小质因子来优化效率。难点在于理解当i%primes[j]==0时,表示找到了i的最小质因子,因此可以终止迭代。
摘要由CSDN通过智能技术生成


一 . 何为线性筛法

线性筛法 , 就是在线性时间(O(n) )把素数用筛选方法找出的算法 。

其中重要的思想就是每个数只会被最小质因子筛,相对于埃氏筛O(nlogn)更快。

二.代码

例题 : [ACWing 868 筛素数](868. 筛质数 - AcWing题库)

在这里插入图片描述

#include <bits/stdc++.h>
using namespace std ;

const int N = 1000200;
int primes[N] ,cnt ; // primes数组记录每个素数 ,cnt记录素数个数
bool st[N] ;  //st记录是否筛
int main(){
    int n;
    cin >> n;
    
    for(int i = 2; i <=  n ; i++){
        
        if(!st[i]) primes[cnt++] = i;
        
        for(int j = 0 ; primes[j] <= n / i ; j++){
            st[ primes[j] * i ] = true;
            //划去合数
            if( i % primes[j] == 0) break;  // #
            //难点在这 线性筛的原理就是用最小的质因子筛去该数 break了的原因就是已经找到了i的最小质因数primes[j] , 也是primes[j] * i 的最小质因数 ,故不能再往下迭代 , 下面会更详细讨论
        }
    }
    
    cout <<cnt;
    return 0;
}

对于上面的难点 , 主要理解i % primes[j] == 0 或者 != 0 的情况

  1. i % primes[j] == 0 (以下prrims[j] 简称 p)

    由于p 是从小到大的素数 ,此处p是 i 的最小质因子 , 也是 i * p 的最小质因子

  2. i % primes[j] != 0

​ p小于 i 的最小质因子 , 也是 i * p的最小质因子

三.总结

线性筛法较为常用 , 以后的欧拉函数等也会用到,尽量掌握

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值