hdu 6942 CCPC Strings (BM算法+容斥、矩阵快速幂)

本文探讨了一道关于CCPCStrings的题目,涉及计算特定字符串模式在给定长度下的最大出现次数。通过理解贡献、容斥原理和bm算法,作者揭示了计算公式并巧妙地使用矩阵快速幂优化求解。博客详细介绍了递推公式、优化方法以及矩阵构造过程。
摘要由CSDN通过智能技术生成

CCPC Strings
题意:一个字符串中只包含 C , P C,P C,P 两个字符,定义 C C P C n e s s CCPCness CCPCness 是一个字符串中不重叠的 “ C C P C ” “CCPC” CCPC 字符子串的最大数量, 给定一个 n n n,求长度为 n n n 2 n 2^n 2n 个所有字符串的 C C P C n e s s CCPCness CCPCness 之和。
题解:
计算贡献+容斥+推公式
bm线性递推
(了解了一下bm算法,实在太牛了

我先谈谈我的思路:首先我考虑计算一个 C C P C CCPC CCPC 的贡献(不考虑重叠多计算的部分),长度为 n n n 的字符串有 n − 3 n-3 n3 个位置可以放置 C C P C CCPC CCPC,然后剩余的位置随便放,就可以得到公式 ( n − 3 ) × 2 n − 4 (n-3)\times2^{n-4} (n3)×2n4
然后考虑去重,我们可以发现 n = 7 n=7 n=7 时, C C P C C P C CCPCCPC CCPCCPC 这个字符串多计算了一个贡献,然后容斥去重,减掉 C C P C C P C CCPCCPC CCPCCPC 所有的贡献,然后加上 C C P C C P C C P C CCPCCPCCPC CCPCCPCCPC 所有的贡献 . . . ... ...
n < 4 n<4 n<4,输出 0 0 0
n > = 4 n>=4 n>=4
a n = ∑ i = 1 ⌊ n 3 ⌋ ( − 1 ) i − 1 ( n − 3 i ) 2 n − 3 i − 1 a_n=\sum_{i=1}^{\lfloor\frac{n}{3}\rfloor}(-1)^{i-1}(n-3i)2^{n-3i-1} an=i=13n(1)i1(n3i)2n3i1
n = n − 3 n=n-3 n=n3 n > = 7 n>=7 n>=7
a n − 3 = ∑ i = 1 ⌊ n − 3 3 ⌋ ( − 1 ) i − 1 ( n − 3 − 3 i ) 2 n − 3 − 3 i − 1 = ∑ i = 1 ⌊ n 3 ⌋ − 1 ( − 1 ) i − 1 ( n − 3 ( i + 1 ) ) 2 n − 3 ( i + 1 ) − 1 = ∑ i = 2 ⌊ n 3 ⌋ ( − 1 ) i ( n − 3 i ) 2 n − 3 i − 1 a_{n-3}=\sum_{i=1}^{\lfloor{\frac{n-3}{3}}\rfloor}(-1)^{i-1}(n-3-3i)2^{n-3-3i-1} =\sum_{i=1}^{{\lfloor{\frac{n}{3}}\rfloor}-1}(-1)^{i-1}(n-3(i+1))2^{n-3(i+1)-1} =\sum_{i=2}^{{\lfloor{\frac{n}{3}}\rfloor}}(-1)^{i}(n-3i)2^{n-3i-1} an3=i=13n3(1)i1(n33i)2n33i1=i=13n1(1)i1(n3(i+1))2n3(i+1)1=i=23n(1)i(n3i)2n3i1
相加右边只剩下第一项,然后就得到数列的递推公式了
a n + a n − 3 = ( n − 3 ) 2 n − 4 ( n > = 4 ) a_n+a_{n-3}=(n-3)2^{n-4}(n>=4) an+an3=(n3)2n4(n>=4)
然后根据递推式求数列通项,具体求法鸽了,看大佬博客吧

也可以直接分析得到递推式:传送门
得到递推式我们就可以用矩阵快速幂解决:传送门
但是矩阵快速幂会TLE,题解里的出题人吐槽
在这里插入图片描述
菜鸡的我并没有看懂咋优化
(看了上边博主更新后的代码我懂这个优化了,就是把系数矩阵的次幂预处理出来,矩阵快速幂的时候直接用就好了

然后
因为我们可以 f o r for for 循环容斥求 n n n 比较小的情况
所以直接莽BM算法求线性递推公式(太好用了
code:

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef vector<ll> VI;

const ll mod=1000000007;

ll n;
namespace linear_seq 
{
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];
    vector<int> Md;
    
    ll powmod(ll a,ll b) {
		ll res=1;a%=mod; for(;b;b>>=1){
		if(b&1)res=res*a%mod;a=a*a%mod;
		}return res;
	}
    ll mul(ll *a,ll *b,int k) 
	{
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    ll solve(ll n,VI a,VI b) 
	{
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (int p=pnt;p>=0;p--) 
		{
            mul(res,res,k);
            if ((n>>p)&1) 
			{
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) 
	{
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) 
		{
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) 
			{
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } 
			else 
			{
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    ll gao(VI a,ll n) 
	{
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

ll q_pow(ll a, ll n){
	ll ans=1;while(n){
		if(n & 1) ans=(ans*a)%mod;a=(a*a)%mod;n>>=1;
	}return ans;
}
int main() {
 
        vector<ll>v;
        for(int k=1;k<=20;k++){
        	ll ans = 0;
        	n = k;
        	if(n < 4) ans = 0;
        	else 
        	{
        		ll tt = 0;
        		if(n >= 7)
        		{
        			for(int i = 7; i <= n; i += 3)//  容斥 
					{
						if(((i - 4) / 3) & 1)// +
							tt = ((n - i + 1) * q_pow(2, n - i) % mod + tt) % mod;
						else 
							tt = (tt + mod - ((n - i + 1) * q_pow(2, n - i))) % mod;
					}	
				}
				ans = ((n-3)*q_pow(2,n-4)%mod-tt+mod)%mod;// 因为减完可能是负的,记得加mod再取模
			}
			//cout << ans << endl;
        	v.push_back(ans);
        }
    int t;
    scanf("%d",&t);
    while (t--) {
        scanf("%lld",&n);
        printf("%lld\n",linear_seq::gao(v,n-1));
    }
}

更一下矩阵快速幂的解法
上边博主的构造思路:其实就是想 ( n − 3 ) ∗ 2 n − 4 (n-3)*2^{n-4} (n3)2n4 怎么变到 ( n − 2 ) ∗ 2 n − 3 (n-2)*2^{n-3} (n2)2n3 ( n − 3 ) ∗ 2 n − 4 (n-3)*2^{n-4} (n3)2n4 可以先乘个 2 2 2 可以变成 ( n − 3 ) ∗ 2 n − 3 (n-3)*2^{n-3} (n3)2n3 。然后要在 a a a 矩阵后加一个元素 2 n − 3 2^{n-3} 2n3 来辅助最后的变换。
递推式 f n + f n − 3 = ( n − 3 ) ∗ 2 n − 4 f_n+f_{n-3}=(n-3)*2^{n-4} fn+fn3=(n3)2n4
引用一下博主的图片
在这里插入图片描述
然后就得到了系数矩阵 A A A
最后引用一下大佬的代码

#include<bits/stdc++.h>
#define ll long long
#define mem(a) memset(a,0,sizeof(a))
using namespace std;

const int mod = 1e9+7;
const int N = 5;

struct Matrix{
	ll s[N+1][N+1];
	Matrix(){
		for(int i=1;i<=N;i++)
			for(int j=1;j<=N;j++)
				s[i][j]=0;
	}
};

Matrix mul(Matrix a,Matrix b){
	Matrix res;
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++){
			for(int k=1;k<=N;k++){
				res.s[i][j]+=(a.s[i][k]*b.s[k][j]+mod)%mod;
				res.s[i][j]%=mod;
			}
		}
	}
	return res;
}

Matrix C[30];

Matrix fastpow(ll b){
	Matrix res;
	for(int i=1;i<=N;i++) res.s[i][i]=1;
	int cnt=0;
	while(b){
		if(b&1){
			res=mul(res,C[cnt]);
		}
		b>>=1;
		cnt++;
	}
	return res;
}

int main(){
	Matrix A,f;
	A.s[3][1]=-1;
	A.s[1][2]=A.s[2][3]=A.s[4][1]=A.s[5][4]=1;
	A.s[4][4]=A.s[5][5]=2;
	f.s[1][1]=12;
	f.s[1][2]=4;
	f.s[1][3]=1;
	f.s[1][4]=32;
	f.s[1][5]=16;
	//预处理A^2,A^4,A^8,用C矩阵存起来
	C[0]=A;
	for(int i=1;i<=30;i++){
	    C[i]=mul(C[i-1],C[i-1]);
	}
	
	int t;
	cin>>t;
	ll n;
	while(t--){
		cin>>n;
		if(n<4) cout<<0<<endl;
		else if(n==4) cout<<1<<endl;
		else if(n==5) cout<<4<<endl;
		else{
			Matrix B, ans;
			B = fastpow(n-6);
			ans = mul(f, B);
			cout<<ans.s[1][1]<<endl;
		}

	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值