牛客竞赛数学专题班简单排列和组合(排列组合问题、阶乘、组合数)

比赛传送门

E题

C. The Intriguing Obsession—cf链接

思路:
要明白这道题,首先要理解题目中的约束条件。

  1. 相同颜色的点之间不能直接连接
  2. 思考一个点的链接情况:a->b->c->a,这样才能使得两个颜色相同的点链接在一起

要明白条件首先要研究两个条件都刻画了什么特征
一个点可以不连接,可以只连接任意颜色的点,若连两个点必须连接两个颜色不同的点
转化一下就是:一个节点至多连接两个颜色相异的点
可以看出两种颜色之间的连线的种数是相互独立的
然后可以进一步简化问题,变成求 2 2 2 种颜色连线种数相乘!

dp做法
有详细的dp状态分析

组合数学做法

对于两种颜色,要保证相同数量的点进行连接,相同数量的点进行匹配,应该固定一种颜色的点的顺序,然后对另外一个颜色的点进行全排列
用公式概括也就是: ∑ i = 0 m i n ( a , b ) C a i ∗ C b i ∗ i ! \sum_{i=0}^{min(a,b)}C_a^i*C_b^i*i! i=0min(a,b)CaiCbii!

code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 2e5 + 9;
const int mod =  998244353;
ll n, m, t;
ll fac[maxn];
ll q_pow(ll a, ll n, ll ans = 1){
	while(n){
		if(n & 1) ans=ans*a%mod;a=a*a%mod;n>>=1;
	}return ans;
}
ll C(ll n, ll m)
{
	ll x = 1, y = 1;
	for(ll i = 1; i <= m; ++i)
		x = x * i % mod, y = y * (n - i + 1) % mod;
	return y * q_pow(x, mod - 2) % mod;
}
ll solve(ll a, ll b)
{
	ll ans = 0;
	for(int i = 0; i <= min(a, b); ++i)
		ans = (ans + C(a, i) * fac[i] % mod * C(b, i) % mod) % mod;
	return ans;
}
void work()
{
	fac[0] = 1;
	for(int i = 1; i <= maxn - 9; ++i)
		fac[i] = fac[i-1] * i % mod;
	cin >> n >> m >> t;
	cout << solve(n, m) * solve(m, t) % mod * solve(n, t) % mod;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

F题

C. Beautiful Numbers----cf链接
思路:
给定三个数 a , b , n ( 1 < = a , b < = 9 ) a,b,n(1<=a,b<=9) a,b,n1<=a,b<=9),如果一个数仅有 a , b a,b a,b 两个数组成,那么它是一个 g o o d good good 数,如果 g o o d good good 数的各位和也仅由 a , b a,b a,b 组成,那么它是 e x c e l l e n t excellent excellent
思路:
O ( n ) O(n) O(n) 枚举选择数字 a a a 的个数 i i i,那么 b b b 就是 n − i n-i ni 个,然后 c h e c k check check 数字 a ∗ i + b ∗ ( n − i ) a*i+b*(n-i) ai+b(ni) 是不是全由数字 a , b a,b a,b 组成的,如果是,答案加上 C n i C_n^i Cni,扫一遍即可
逆元和阶乘预处理,即可 O ( 1 ) O(1) O(1) 得到组合数,用快速幂会慢接近 9 9 9
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e6 + 9;
const int mod = 1e9 + 7;
ll n, m, t;
ll fac[maxn], inv[maxn];
ll C(ll n, ll m)
{
	return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
bool check(ll a, ll b, ll x)
{
	if(!x) return 0;
	while(x){
		if(!(x % 10 == a || x % 10 == b))
			return false;
		x /= 10;
	}return true;
}
void work()
{
	fac[0] = inv[0] = 1;
	fac[1] = inv[1] = 1;
	for(int i = 2; i <= 1e6; ++i)
		fac[i] = fac[i-1] * i % mod,
		inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
	for(int i = 1; i <= 1e6; ++i)
		inv[i] = inv[i-1] * inv[i] % mod;
	ll a, b;
	cin >> a >> b >> n;
	ll ans = 0;
	for(int i = 0; i <= n; ++i)
	{
		ll t = a * i + (n - i) * b;
		if(check(a, b, t))
			ans = (ans + C(n, i)) % mod;
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

G题

D. Count the Arrays----cf链接
题意:
计算由多少个数组满足以下特征
长度为 n n n
每个元素都属于 [ 1 , m ] [1,m] [1,m]
数组中必须有一个元素出现两次
数组中存在一个索引 i i i,满足 j < i j<i j<i a j < a j + 1 a_j<a_{j+1} aj<aj+1 j > = i j>=i j>=i a j > a j + 1 a_j>a_{j+1} aj>aj+1
思路:
每个数组由 n − 1 n-1 n1 个数组成,首先从 m m m 个元素中选出 n − 1 n-1 n1 个,即 C m n − 1 C_m^{n-1} Cmn1
然后会有一个数出现两次,但不能是最大值,因此再乘以 C n − 2 1 C_{n-2}^1 Cn21
除了出现两次以外的数,其他数只出现一次,要么出现在左边,要么出现在右边,因此 n − 2 n-2 n2 个数中的剩下 n − 3 n-3 n3 个数,可以选择右边或左边,乘以 2 n − 3 2^{n-3} 2n3
那么答案就是 C m n − 1 ∗ ( n − 2 ) ∗ 2 n − 3 ( n > = 3 ) C_m^{n-1}*(n-2)*2^{n-3}(n>=3) Cmn1(n2)2n3(n>=3)
最后乘的 2 n − 3 2^{n-3} 2n3 也可以这么理解:
我们枚举最大值的位置,第二个空,第三个空 … 倒数第二个空
每次确定完最大值位置后,其他数可以选择放左边或者右边,我们选出放左边的数的个数
C n − 3 0 , C n − 3 1 . . . C n − 3 n − 3 C_{n-3}^0,C_{n-3}^1...C_{n-3}^{n-3} Cn30,Cn31...Cn3n3,加起来即为 2 n − 3 2^{n-3} 2n3
显然 n < = 2 n<=2 n<=2 是存在的,特判掉即可
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 2e5 + 9;
const int mod = 998244353;
ll n, m, t;
ll fac[maxn], inv[maxn];
ll C(ll n, ll m)
{
	return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll q_pow(ll a, ll n, ll ans = 1){
	while(n){
		if(n & 1) ans=ans*a%mod;a=a*a%mod;n>>=1;
	}return ans;
}
void work()
{
	fac[0] = inv[0] = 1;
	fac[1] = inv[1] = 1;
	for(int i = 2; i <= maxn - 9; ++i)
		fac[i] = fac[i-1] * i % mod,
		inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
	for(int i = 1; i <= maxn - 9; ++i)
		inv[i] = inv[i-1] * inv[i] % mod;
	cin >> n >> m;
	if(n <= 2) cout << 0 << endl;
	else cout << C(m, n - 1) * (n - 2) % mod * q_pow(2, n - 3) % mod;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

H题

E. Bus Number-----cf链接
题意:

思路:
dfs+计数
x ( ∈ [ 0 , 9 ] ) x(\in [0,9]) x([0,9]) 中每次选出 i ( ∈ n u m [ x ] ) i(\in num[x]) i(num[x]) 个,然后统计个数即可
说说如何统计个数
不考虑 0 0 0 为前导对答案的影响,答案即为 c n t ! A [ 0 ] ! ∗ A [ 1 ] ! ∗ . . . ∗ A [ 9 ] ( A [ i ] 是 数 字 i 出 现 的 次 数 ) \frac{cnt!}{A[0]!*A[1]!*...*A[9]}(A[i]是数字i出现的次数) A[0]!A[1]!...A[9]cnt!(A[i]i) c n t cnt cnt 为选择的数的个数
然后减去 0 0 0 为前导的情况
0 0 0 为前导的个数占总数的 A [ 0 ] c n t \frac{A[0]}{cnt} cntA[0],这个具体为什么我也不清楚,模拟一下确实是这个比例
122 , 212 , 221 122,212,221 122,212,221 三个排列, 2 2 2 的个数为 2 2 2 2 2 2 开头的排列占 2 3 \frac{2}{3} 32
1222 , 2122 , 2212 , 2221 1222,2122,2212,2221 1222,2122,2212,2221 四个排列,同理
现在知道为啥是这个比例了,这个排列显然是去重后的,如果不去重,那么三个数的全排列就是6,那么以 x x x 开头的排列的个数,占比是 A [ x ] c n t \frac{A[x]}{cnt} cntA[x],但是这种排列进行去重之后这个比例是不变的。
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 2e5 + 9;
const int mod = 998244353;
ll n, m, t;
ll fac[30], num[30], tmpnum[30];
ll ans;
void dfs(int x) //从0~9寻找各数字的出现
{
	if(x == 10){
		int cnt = 0; //cnt记录所有数字的个数
		for(int i = 0; i < 10; ++i)
			cnt += tmpnum[i];
		ll p = fac[cnt];// 选出来这种方案的全排列 
		for(int i = 0; i < 10; ++i)
			p /= fac[tmpnum[i]];
		//  sum! / (A[0]!*A[1]!*...*A[9]!)
		if(tmpnum[0] >= 1)// 减去0为前导的情况 
			p -= (p * tmpnum[0] / cnt);
		ans += p;
		return;
	}
	for(int i = 1; i <= num[x]; ++i) 
		tmpnum[x] = i, dfs(x + 1);
	if(num[x] == 0) dfs(x + 1);
}
void work()
{
	fac[0] = 1;
	for(int i = 1; i <= 25; ++i)
		fac[i] = fac[i-1] * i;
	cin >> n;
	while(n){
		num[n%10]++;
		n /= 10;
	}
	dfs(0);
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

还有两道暂时不补了,感觉好难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值