构造二叉树 Almost Balanced Tree

A. Almost Balanced Tree
题意:
给定 a a a 个权值为 1 1 1 的节点, b b b 个权值为 2 2 2 的节点,构造一棵二叉树,满足两子树权值之差不超过 1 1 1,无子树权值看成 0 0 0,输出构造二叉树
思路:
贪心的想,先用 2 2 2,尽量把 2 2 2 平均放到离根节点近的位置,然后用 1 1 1 平衡使得差值不超过 1 1 1
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define mem(x, d) memset(x, d, sizeof(x))
#define eps 1e-6
using namespace std;
const int maxn = 2e6 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
int val[maxn], l[maxn], r[maxn];
bool f = 0;
int cnt = 0;
void dfs(int p, int a, int b){
	if(b){
		--b;
		val[p] = 2;
	}
	else{
		--a;
		val[p] = 1;
	}
	int lb = b / 2, rb = b - b / 2;
	int sum = a + b * 2; 
	int la = sum / 2 - lb * 2;// 用权值1的节点平衡两子树 
	int ra = a - la;
	if(la < 0 || ra < 0){
		f = 1;return;
	}
	if(la || lb){
		l[p] = ++cnt;
		dfs(cnt, la, lb);
	}
	if(ra || rb){
		r[p] = ++cnt;
		dfs(cnt, ra, rb);
	}
}
void work()
{
	cin >> n >> m;
	dfs(++cnt, n, m);
	if(f){
		cout << -1 << endl;return;
	}
	for(int i = 1; i <= n + m; ++i){
		cout << val[i] << " " << l[i] << " " << r[i] << endl;
	}
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值