监督学习中如何处理不均衡的标签类别?

监督学习中如何处理不均衡的标签类别?

在监督学习中,不均衡的标签类别是指数据集中各个类别的样本数量不平衡。例如,在二分类问题中,一个类别的样本数量远远多于另一个类别,这种不均衡会导致模型在预测时出现偏差,更倾向于预测数量较多的类别。为了解决这个问题,我们可以采取一些方法来平衡标签类别,从而获得更好的模型预测效果。

算法原理

一种常用的处理不均衡标签类别的方法是过采样和欠采样。过采样是指增加少数类别的样本数量,而欠采样是指减少多数类别的样本数量。下面介绍一种经典的过采样方法——SMOTE算法。

SMOTE(Synthetic Minority Over-sampling Technique)算法通过合成新的少数类样本来解决不均衡标签类别的问题。该算法首先选择一个少数类别样本,然后在该样本的邻近区域内随机选择一个样本,并根据这两个样本的差异来合成一个新的样本。这样反复进行,直到达到平衡的标签类别。

SMOTE算法的具体过程如下:

  1. 对于每个少数类别样本,计算其k个最近邻(通过欧氏距离或其他距离度量)。
  2. 从k个最近邻中随机选择一个样本。
  3. 使用公式 x n e w = x m i n o r i t y + λ ( x k n n − x m i n o r i t y ) \mathbf{x_{new}} = \mathbf{x_{minority}} + \lambda(\mathbf{x_{knn}} - \mathbf{x_{minority}}) xnew=xminority+λ(xknnxminority)生成一个新的合成样本,其中 x m i n o r i t y \mathbf{x_{minority}} xminority是少数类别样本, x k n n \mathbf{x_{knn}} xknn是所选最近邻样本, λ \lambda λ是一个随机数,取值在0和1之间。
  4. 重复步骤2和3,直到生成足够数量的新合成样本。

公式推导

生成新的合成样本的公式为:
x n e w = x m i n o r i t y + λ ( x k n n − x m i n o r i t y ) \mathbf{x_{new}} = \mathbf{x_{minority}} + \lambda(\mathbf{x_{knn}} - \mathbf{x_{minority}}) xnew=xminority+λ(xknnxminority)

其中, x m i n o r i t y \mathbf{x_{minority}} xminority表示少数类别样本, x k n n \mathbf{x_{knn}} xknn表示所选最近邻样本, λ \lambda λ是一个随机数。

计算步骤

下面通过一个示例来演示如何使用SMOTE算法处理不均衡标签类别。

假设我们有一个虚拟的数据集,包含两个标签类别,其中一个类别有900个样本,另一个类别有100个样本。我们希望通过SMOTE算法平衡这两个类别。

首先,我们加载数据集并将其分成两个类别。然后,我们使用SMOTE算法对少数类别进行过采样。

import numpy as np
from sklearn.datasets import make_classification
from imblearn.over_sampling import SMOTE

# 生成虚拟数据集
X, y = make_classification(n_samples=1000, n_features=20, weights=[0.9, 0.1], random_state=42)

# 将数据集分成两个类别
minority_class = X[y == 1]
majority_class = X[y == 0]

# 使用SMOTE算法进行过采样
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)

# 计算过采样后的类别数量
unique, counts = np.unique(y_resampled, return_counts=True)
class_counts = dict(zip(unique, counts))
print("Class Counts:", class_counts)

运行上述代码后,我们可以看到过采样后的类别数量已经得到平衡。通过打印输出class_counts,我们可以验证过采样后的类别数量为900。

代码细节解释

上述代码中,我们使用了make_classification函数生成一个虚拟的二分类数据集。参数n_samples指定数据集的总样本数量,n_features指定每个样本的特征数量,weights用于设置每个类别的权重,random_state用于设置随机种子,以确保结果的可复现性。

然后,我们将数据集分为两个标签类别,对于少数类别,我们使用SMOTE算法进行过采样。具体来说,我们使用SMOTE类的fit_resample方法将数据集进行过采样,返回过采样后的样本和标签。

最后,我们使用np.unique函数计算过采样后的类别数量,并使用zip函数将类别标签和数量统计结果转换为字典形式,最后打印输出。这样可以验证SMOTE算法成功地平衡了标签类别。

通过这种方式,我们可以在处理不均衡标签类别的监督学习问题时,使用SMOTE算法进行过采样,从而提高模型的预测性能。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值