[C++]Leetcode455.分发饼干

该博客介绍了一种解决分配饼干问题的算法,确保尽可能满足更多孩子的需求。通过首先对孩子的胃口值和饼干尺寸进行排序,然后使用双指针策略在循环中匹配合适的饼干给孩子们。算法的时间复杂度为O(mlogm),其中m为孩子和饼干数量的最大值,空间复杂度为O(1)。示例展示了如何处理不同情况并返回满足的孩子数量。
摘要由CSDN通过智能技术生成

455.分发饼干

题目:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj>= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

注意:你可以假设胃口值为正。一个小朋友最多只能拥有一块饼干。

示例 1: 输入: [1,2,3],
[1,1] 输出: 1

解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。

示例 2: 输入: [1,2],
[1,2,3] 输出: 2

解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.

先用sort进行排序,接着while循环在不等于原数组的长度下,进行if判断,对应的指针后移。


class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) 
    {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int res = 0;
        int i = 0;
        int j = 0;
        while(i != g.size() && j != s.size())
        {
            if(s[j] >= g[i])
            {
                res++;
                i++;
                j++;
            }
            else j++;
        }
        return res;
    }
};

时间复杂度:O(mlogm),其中,m=max(n1,n2),n1,n2分别为g,s数组的大小sort算法的复杂度为O(nlogn)
while循环的复杂度是O(n1+n2) 所以总的时间复杂度是O(mlogm)。

空间复杂度:O(1),只开辟了常数变量的大小

[[C++]Leetcode超高效刷题顺序及题目详解笔记(持续更新中)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值