455.分发饼干
题目:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj>= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
注意:你可以假设胃口值为正。一个小朋友最多只能拥有一块饼干。
示例 1: 输入: [1,2,3],
[1,1] 输出: 1
解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
示例 2: 输入: [1,2],
[1,2,3] 输出: 2
解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.
先用sort进行排序,接着while循环在不等于原数组的长度下,进行if判断,对应的指针后移。
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s)
{
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int res = 0;
int i = 0;
int j = 0;
while(i != g.size() && j != s.size())
{
if(s[j] >= g[i])
{
res++;
i++;
j++;
}
else j++;
}
return res;
}
};
时间复杂度:O(mlogm),其中,m=max(n1,n2),n1,n2分别为g,s数组的大小sort算法的复杂度为O(nlogn)
while循环的复杂度是O(n1+n2) 所以总的时间复杂度是O(mlogm)。
空间复杂度:O(1),只开辟了常数变量的大小