669. 修剪二叉搜索树
题目:给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构(即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在唯一的答案。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]
示例 2:
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
示例 3:
输入:root = [1], low = 1, high = 2
输出:[1]
示例 4:
输入:root = [1,null,2], low = 1, high = 3
输出:[1,null,2]
迭代法(用一个指针来不断迭代剪枝)
- 根节点为空,直接返回空
- 头结点在给定区间外时,剪枝。完成后初始化指针指向根节点
- 处理左孩子不满足区间的情况,两个while循环。第一个循环判断不为空,第二个循环判断左孩子存在且左孩子不满足条件。内层循环后更新cur,外层循环完成后,更新cur为根节点。
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root == nullptr) return nullptr;
while(root->val < low || root->val > high)
{
if(root->val < low)
root = root->right;
else
root = root->left;
if(root == nullptr) break;
}
TreeNode* cur = root;
while(cur != nullptr)
{
while(cur->left && cur->left->val < low)
{
cur->left = cur->left->right;
}
cur = cur->left;
}
cur = root;
while(cur != nullptr)
{
while(cur->right && cur->right->val > high)
{
cur->right = cur->right->left;
}
cur = cur->right;
}
return root;
}
};