[C++]LeetCode669. 修剪二叉搜索树

669. 修剪二叉搜索树

题目:给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构(即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在唯一的答案。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

示例 1:
在这里插入图片描述

输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]
示例 2:
在这里插入图片描述

输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
示例 3:
输入:root = [1], low = 1, high = 2
输出:[1]
示例 4:
输入:root = [1,null,2], low = 1, high = 3
输出:[1,null,2]

迭代法(用一个指针来不断迭代剪枝)

  1. 根节点为空,直接返回空
  2. 头结点在给定区间外时,剪枝。完成后初始化指针指向根节点
  3. 处理左孩子不满足区间的情况,两个while循环。第一个循环判断不为空,第二个循环判断左孩子存在且左孩子不满足条件。内层循环后更新cur,外层循环完成后,更新cur为根节点。
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == nullptr) return nullptr;
        while(root->val < low || root->val > high)
        {
            if(root->val < low)
                root = root->right;
            else
                root = root->left;
            if(root == nullptr) break;
        }
        TreeNode* cur = root;
        while(cur != nullptr)
        {
            while(cur->left && cur->left->val < low)
            {
                cur->left = cur->left->right;
            }
            cur = cur->left;
        }
        cur = root; 
        while(cur != nullptr)
        {
            while(cur->right && cur->right->val > high)
            {
                cur->right = cur->right->left;
            }
            cur = cur->right;
        }
        return root;
    }
};

[[C++]Leetcode超高效刷题顺序及题目详解笔记(持续更新中)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值