37今日速递!
我们说的线性方程组的解,其实就是说的方程组是否相容。我们在将一个矩阵化为它的简化阶梯型后,,可以得出它解集的一种显示表示法。
如果我们拿到一个·矩阵,第一时间就会知道它对应的方程组。
例如:
我们便可知道它对应的方程组为
我们把对应于主元列的X1和X2叫做基本变量,其他的如X3我们称之为自由变量。
对于自由变量的定义,是指它可以取任意的值,这都对我们的解集没有影响。我们根据方程组的前两行将X1和X2确定后,再结合X3随意取的值,组合在一起就是这个线性方程组的解集。
由于有X3这个可以随意取值的自由变量存在,所以X3的不同选择决定了方程组不同的解集,每一个解都由X3的值的选择而发生变化。
我们对上面的方程组解出来后,会获得如下的解集:
像这样的解集呢我们称之为方程组的通解,因为它给出了所有解的显式表示。
那么有些小朋友可能就会问了,如果我们遇到的方程组,自由变量不只有一个咋办,举手投降吗?
偶服寇尔斯~漏特!
既然有多个自由变量,那我们就都写上去,管他自由变量有多少个,反正也是随意取值,到最后解出来的方程组该相容还是相容,不相容还是不相容。
说到这里大家可以有一个误解:
3737,你刚刚说的自由变量不会影响方程组的结果,为什么基本变量还是会因为自由变量的变化而变化呢?
那我问你,你的头怎么尖尖的(抱歉走错片场了~)
那我问你,有这么一个式子:
我们很容易地解出来x和y的值,那我把等式两边同时乘一个非零常数,你解出来的值会变化吗?同样的道理,这里方程组的解集其实并不是为了解出某个确切的值,而是解出一个能让方程组相容的值,所以尽管基本变量会随着自由变量的改变而改变,但它是否相容是不变的。
好啦,这节的分享就到这里,大家有什么不懂的就在37的后台留言吧。