线性代数及其应用 1.2.2线性方程组的解

37今日速递!

我们说的线性方程组的解,其实就是说的方程组是否相容。我们在将一个矩阵化为它的简化阶梯型后,,可以得出它解集的一种显示表示法。

如果我们拿到一个·矩阵,第一时间就会知道它对应的方程组。

例如:

A= \begin{bmatrix} 1 & 0 &-5 &1 \\ 0& 1 & 1 &4 \\ 0& 0 & 0 & 0 \end{bmatrix}

我们便可知道它对应的方程组为

x_{1} -5x_{3} = 1\\ x_{2} + x_{3} = 4\\ 0=0

我们把对应于主元列的X1和X2叫做基本变量,其他的如X3我们称之为自由变量。

对于自由变量的定义,是指它可以取任意的值,这都对我们的解集没有影响。我们根据方程组的前两行将X1和X2确定后,再结合X3随意取的值,组合在一起就是这个线性方程组的解集。

由于有X3这个可以随意取值的自由变量存在,所以X3的不同选择决定了方程组不同的解集,每一个解都由X3的值的选择而发生变化。

我们对上面的方程组解出来后,会获得如下的解集:

\begin{cases} { } x_{1}= 1 + 5x_{3}\\ { } x_{2}= 4 - 5x_{3}\\ { } x_{3} = free \end{cases}

像这样的解集呢我们称之为方程组的通解,因为它给出了所有解的显式表示。

那么有些小朋友可能就会问了,如果我们遇到的方程组,自由变量不只有一个咋办,举手投降吗?

偶服寇尔斯~漏特!

既然有多个自由变量,那我们就都写上去,管他自由变量有多少个,反正也是随意取值,到最后解出来的方程组该相容还是相容,不相容还是不相容。

说到这里大家可以有一个误解:

3737,你刚刚说的自由变量不会影响方程组的结果,为什么基本变量还是会因为自由变量的变化而变化呢?

那我问你,你的头怎么尖尖的(抱歉走错片场了~)

那我问你,有这么一个式子:

\begin{cases} x + y = 1\\ x-2y = 3 \end{cases}

我们很容易地解出来x和y的值,那我把等式两边同时乘一个非零常数,你解出来的值会变化吗?同样的道理,这里方程组的解集其实并不是为了解出某个确切的值,而是解出一个能让方程组相容的值,所以尽管基本变量会随着自由变量的改变而改变,但它是否相容是不变的

好啦,这节的分享就到这里,大家有什么不懂的就在37的后台留言吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值