前言
在做文本挖掘的时候,首先要做的预处理就是分词。英文单词天然有空格隔开容易按照空格分词,但是也有时候需要把多个单词做为一个分词,比如一些名词如“New York”,需要做为一个词看待。而中文由于没有空格,分词就是一个需要专门去解决的问题了。无论是英文还是中文,分词的原理都是类似的,本文就对文本挖掘时的分词原理做一个总结。
1. 分词的基本原理
现代分词都是基于统计的分词,而统计的样本内容来自于一些标准的语料库。假如有一个句子:“小明来到荔湾区”,我们期望语料库统计后分词的结果是:“小明/来到/荔湾/区”,而不是“小明/来到/荔/湾区”。那么如何做到这一点呢?
从统计的角度,我们期望"小明/来到/荔湾/区"这个分词后句子出现的概率要比“小明/来到/荔/湾区”大。如果用数学的语言来说说,如果有一个句子
S
S
S, 它有m种分词选项如下
A
11
A
12
⋯
A
1
n
1
A
21
A
22
⋯
A
2
n
2
⋯
⋯
⋯
A
m
1
A
m
2
.
.
.
A
m
n
m
A_{11}A_{12} \cdots A_{1n1}\\ A_{21}A_{22} \cdots A_{2n2}\\ \cdots \cdots \cdots \\ A_{m1}A_{m2}...A_{mn_m}\\
A11A12⋯A1n1A21A22⋯A2n2⋯⋯⋯Am1Am2...Amnm
其中下标
n
i
n_i
ni代表第
i
i
i种分词的词个数。如果我们从中选择了最优的第
r
r
r种分词方法,那么这种分词方法对应的统计分布概率应该最大,即:
r
=
a
r
g
m
a
x
⏟
i
P
(
A
i
1
,
A
i
2
,
⋯
,
A
i
n
i
)
r = \begin{matrix} \underbrace{arg \ max } \\ i \end{matrix}P(A_{i1},A_{i2},\cdots,A_{ini})
r=
arg maxiP(Ai1,Ai2,⋯,Aini)
但是我们的概率分布
P
(
A
i
1
,
A
i
2
,
⋯
,
A
i
n
i
)
P(A_{i1},A_{i2}, \cdots ,A_{ini})
P(Ai1,Ai2,⋯,Aini)并不好求出来,因为它涉及到
n
i
n_i
ni个分词的联合分布。在NLP中,为了简化计算,我们通常使用马尔科夫假设,即每一个分词出现的概率仅仅和前一个分词有关,即:
P
(
A
i
j
∣
A
i
1
,
A
i
2
,
⋯
,
A
i
(
j
−
1
)
)
=
P
(
A
i
j
∣
A
i
(
j
−
1
)
)
P(A_{ij}|A_{i1},A_{i2}, \cdots ,A_{i(j−1)})=P(A_{ij}|A_{i(j−1)})
P(Aij∣Ai1,Ai2,⋯,Ai(j−1))=P(Aij∣Ai(j−1))
在前面我们讲MCMC采样时,也用到了相同的假设来简化模型复杂度。使用了马尔科夫假设,则我们的联合分布就好求了,即:
P
(
A
i
1
,
A
i
2
,
⋯
,
A
i
n
i
)
=
P
(
A
i
1
)
P
(
A
i
2
∣
A
i
1
)
P
(
A
i
3
∣
A
i
2
)
⋯
P
(
A
i
n
i
∣
A
i
(
n
i
−
1
)
)
P(A_{i1},A_{i2},\cdots,A_{in_i})=P(A_{i1})P(A_{i2}|A_{i1})P(A_{i3}|A_{i2}) \cdots P(A_{in_i}|A_{i(n_{i−1})})
P(Ai1,Ai2,⋯,Aini)=P(Ai1)P(Ai2∣Ai1)P(Ai3∣Ai2)⋯P(Aini∣Ai(ni−1))
而通过我们的标准语料库,我们可以近似的计算出所有的分词之间的二元条件概率,比如任意两个词w1,w2,它们的条件概率分布可以近似的表示为:
P
(
w
2
∣
w
1
)
=
P
(
w
1
,
w
2
)
P
(
w
1
)
≈
f
r
e
q
(
w
1
,
w
2
)
f
r
e
q
(
w
1
)
P
(
w
1
∣
w
2
)
=
P
(
w
2
,
w
1
)
P
(
w
2
)
≈
f
r
e
q
(
w
1
,
w
2
)
f
r
e
q
(
w
2
)
P(w2|w1)=\frac{P(w1,w2)}{P(w1)}≈\frac{freq(w1,w2)}{freq(w1)} ~\\ ~\\ P(w1|w2)=\frac{P(w2,w1)}{P(w2)}≈\frac{freq(w1,w2)}{freq(w2)}
P(w2∣w1)=P(w1)P(w1,w2)≈freq(w1)freq(w1,w2) P(w1∣w2)=P(w2)P(w2,w1)≈freq(w2)freq(w1,w2)
其中 f r e q ( w 1 , w 2 ) freq(w1,w2) freq(w1,w2)表示 w 1 w1 w1, w 2 w2 w2在语料库中相邻一起出现的次数,而其中 f r e q ( w 1 ) , f r e q ( w 2 ) freq(w1),freq(w2) freq(w1),freq(w2)分别表示 w 1 , w 2 w1,w2 w1,w2在语料库中出现的统计次数。
利用语料库建立的统计概率,对于一个新的句子,我们就可以通过计算各种分词方法对应的联合分布概率,找到最大概率对应的分词方法,即为最优分词。
2. N元模型
当然,你会说,只依赖于前一个词太武断了,我们能不能依赖于前两个词呢?即:
P
(
A
i
1
,
A
i
2
,
⋯
,
A
i
n
i
)
=
P
(
A
i
1
)
P
(
A
i
2
∣
A
i
1
)
P
(
A
i
3
∣
A
i
1
,
A
i
2
)
.
.
.
P
(
A
i
n
i
∣
A
i
(
n
i
−
2
)
,
A
i
(
n
i
−
1
)
)
P(A_{i1},A_{i2},\cdots,Aini)=P(Ai1)P(Ai2|Ai1)P(Ai3|Ai1,Ai2)...P(Aini|Ai(ni−2),Ai(ni−1))
P(Ai1,Ai2,⋯,Aini)=P(Ai1)P(Ai2∣Ai1)P(Ai3∣Ai1,Ai2)...P(Aini∣Ai(ni−2),Ai(ni−1))
这样也是可以的,只不过这样联合分布的计算量就大大增加了。我们一般称只依赖于前一个词的模型为二元模型(Bi-Gram model),而依赖于前两个词的模型为三元模型。以此类推,我们可以建立四元模型,五元模型,…一直到通用的 N N N元模型。越往后,概率分布的计算复杂度越高。当然算法的原理是类似的。
在实际应用中, N N N一般都较小,一般都小于4,主要原因是 N N N元模型概率分布的空间复杂度为 O ( ∣ V ∣ N ) O(|V|^N) O(∣V∣N),其中 ∣ V ∣ |V| ∣V∣为语料库大小,而 N N N为模型的元数,当N增大时,复杂度呈指数级的增长。
N元模型的分词方法虽然很好,但是要在实际中应用也有很多问题,首先,某些生僻词,或者相邻分词联合分布在语料库中没有,概率为0。这种情况我们一般会使用拉普拉斯平滑,即给它一个较小的概率值,这个方法在朴素贝叶斯算法原理小结也有讲到。第二个问题是如果句子长,分词有很多情况,计算量也非常大,这时我们可以用下一节维特比算法来优化算法时间复杂度。
3. 维特比算法与分词
为了简化原理描述,我们本节的讨论都是以二元模型为基础。
对于一个有很多分词可能的长句子,我们当然可以用暴力方法去计算出所有的分词可能的概率,再找出最优分词方法。但是用维特比算法可以大大简化求出最优分词的时间。
大家一般知道维特比算法是用于隐式马尔科夫模型HMM解码算法的,但是它是一个通用的求序列最短路径的方法,不光可以用于HMM,也可以用于其他的序列最短路径算法,比如最优分词。
维特比算法采用的是动态规划来解决这个最优分词问题的,动态规划要求局部路径也是最优路径的一部分,很显然我们的问题是成立的。首先我们看一个简单的分词例子:“人生如梦境”。它的可能分词可以用下面的概率图表示:
图中的箭头为通过统计语料库而得到的对应的各分词位置BEMS(开始位置,结束位置,中间位置,单词)的条件概率。比如
P
(
生
∣
人
)
=
0.17
P(生|人)=0.17
P(生∣人)=0.17。有了这个图,维特比算法需要找到从Start到End之间的一条最短路径。对于在End之前的任意一个当前局部节点,我们需要得到到达该节点的最大概率
δ
δ
δ,和记录到达当前节点满足最大概率的前一节点位置
Ψ
Ψ
Ψ。
我们先用这个例子来观察维特比算法的过程。首先我们初始化有:
δ
(
人
)
=
0.26
Ψ
(
人
)
=
S
t
a
r
t
δ
(
人
生
)
=
0.44
Ψ
(
人
生
)
=
S
t
a
r
t
δ(人)=0.26Ψ(人)=Startδ(人生)=0.44Ψ(人生)=Start
δ(人)=0.26Ψ(人)=Startδ(人生)=0.44Ψ(人生)=Start
对于节点"生",它只有一个前向节点,因此有:
δ
(
生
)
=
δ
(
人
)
P
(
生
∣
人
)
=
0.0442
Ψ
(
生
)
=
人
δ(生)=δ(人)P(生|人)=0.0442Ψ(生)=人
δ(生)=δ(人)P(生∣人)=0.0442Ψ(生)=人
对于节点"如",就稍微复杂一点了,因为它有多个前向节点,我们要计算出到“如”概率最大的路径:
δ
(
如
)
=
m
a
x
{
δ
(
生
)
P
(
如
∣
生
)
,
δ
(
人
生
)
P
(
如
∣
人
生
)
}
=
m
a
x
{
0.01680
,
0.3168
}
=
0.3168
Ψ
(
如
)
=
人
生
δ(如)=max\{δ(生)P(如|生),δ(人生)P(如|人生)\}=max\{0.01680,0.3168\}=0.3168 \ Ψ(如)=人生
δ(如)=max{δ(生)P(如∣生),δ(人生)P(如∣人生)}=max{0.01680,0.3168}=0.3168 Ψ(如)=人生
类似的方法可以用于其他节点如下:
δ
(
如
梦
)
=
δ
(
人
生
)
P
(
如
梦
∣
人
生
)
=
0.242
Ψ
(
如
梦
)
=
人
生
δ
(
梦
)
=
δ
(
如
)
P
(
梦
∣
如
)
=
0.1996
Ψ
(
梦
)
=
如
δ
(
境
)
=
m
a
x
{
δ
(
梦
)
P
(
境
∣
梦
)
,
δ
(
如
梦
)
P
(
境
∣
如
梦
)
}
=
m
a
x
{
0.0359
,
0.0315
}
=
0.0359
Ψ
(
境
)
=
梦
δ
(
梦
境
)
=
δ
(
如
)
P
(
梦
境
∣
如
)
=
0.1616
Ψ
(
梦
境
)
=
如
δ(如梦)=δ(人生)P(如梦|人生)=0.242Ψ(如梦)=人生 \\ δ(梦)=δ(如)P(梦|如)=0.1996Ψ(梦)=如\\ δ(境)=max\{δ(梦)P(境|梦),δ(如梦)P(境|如梦)\}=max\{0.0359,0.0315\}=0.0359Ψ(境)=梦\\ δ(梦境)=δ(如)P(梦境|如)=0.1616Ψ(梦境)=如
δ(如梦)=δ(人生)P(如梦∣人生)=0.242Ψ(如梦)=人生δ(梦)=δ(如)P(梦∣如)=0.1996Ψ(梦)=如δ(境)=max{δ(梦)P(境∣梦),δ(如梦)P(境∣如梦)}=max{0.0359,0.0315}=0.0359Ψ(境)=梦δ(梦境)=δ(如)P(梦境∣如)=0.1616Ψ(梦境)=如
最后我们看看最终节点End:
δ
(
E
n
d
)
=
m
a
x
{
δ
(
梦
境
)
P
(
E
n
d
∣
梦
境
)
,
δ
(
境
)
P
(
E
n
d
∣
境
)
}
=
m
a
x
{
0.0396
,
0.0047
}
=
0.0396
Ψ
(
E
n
d
)
=
梦
境
δ(End)=max\{δ(梦境)P(End|梦境),δ(境)P(End|境)\}=max\{0.0396,0.0047\}=0.0396\ Ψ(End)=梦境
δ(End)=max{δ(梦境)P(End∣梦境),δ(境)P(End∣境)}=max{0.0396,0.0047}=0.0396 Ψ(End)=梦境
由于最后的最优解为“梦境”,现在我们开始用
Ψ
Ψ
Ψ反推:
Ψ
(
E
n
d
)
=
梦
境
→
Ψ
(
梦
境
)
=
如
→
Ψ
(
如
)
=
人
生
→
Ψ
(
人
生
)
=
s
t
a
r
t
Ψ(End)=梦境→Ψ(梦境) = 如→Ψ(如) = 人生→Ψ(人生) = start
Ψ(End)=梦境→Ψ(梦境)=如→Ψ(如)=人生→Ψ(人生)=start
从而最终的分词结果为"人生/如/梦境"。是不是很简单呢。
由于维特比算法我会在后面讲隐式马尔科夫模型HMM解码算法时详细解释,这里就不归纳了。
4. 常用分词工具
对于文本挖掘中需要的分词功能,一般我们会用现有的工具。简单的英文分词不需要任何工具,通过空格和标点符号就可以分词了,而进一步的英文分词推荐使用nltk。对于中文分词,则推荐用结巴分词(jieba)。这些工具使用都很简单。你的分词没有特别的需求直接使用这些分词工具就可以了。
5. 结语
分词是文本挖掘的预处理的重要的一步,分词完成后,我们可以继续做一些其他的特征工程,比如向量化(vectorize),TF-IDF以及Hash trick,这些我们后面再讲。