排列组合--隔板法

注:该篇文章已与我的个人博客同步更新。欢迎移步https://cqh-i.github.io/体验更好的阅读效果。


隔板法是组合数学的方法,用来处理n个无差别的球放进k个不同的盒子的问题。可一般化为求不定方程的解数,并利用母函数解决问题。
隔板法与插空法的原理一样。


例子

例1.现在有10个球,要放进3个盒子里
●●●●●●●●●●
隔2个板子,把10个球被隔开成3个部分

●|●|●●●●●●●●、●|●●|●●●●●●●、●|●●●|●●●●●●、●|●●●●|●●●●●、●|●●●●●|●●●●、●|●●●●●●|●●●、…
如此类推,10个球放进3个盒子的方法总数为 ( 10 − 1 3 − 1 ) = ( 9 2 ) = 36 {\displaystyle {\binom {10-1}{3-1}}={\binom {9}{2}}=36} (31101)=(29)=36

n个球放进k个盒子的方法总数为 ( n − 1 k − 1 ) {\displaystyle {\binom {n-1}{k-1}}} (k1n1)(普通隔板法)

问题等价于求 x 1 + x 2 + . . . + x k = n {\displaystyle x_{1}+x_{2}+...+x_{k}=n} x1+x2+...+xk=n的可行解数,其中 x 1 , x 2 , . . . , x k {\displaystyle x_{1},x_{2},...,x_{k}} x1,x2,...,xk为正整数。

理解隔板法

隔板法就是在n个元素间的(n-1)个空插入k-1个板子,把n个元素分成k组的方法。

应用隔板法必须满足的3个条件:

  1. n个元素是相同的
  2. k个组是互异的
  3. 每组至少分得一个元素

公式

将n个相同的求放到m个不同的盒子里的个数为: C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1

例如,把10个相同的球放入3个不同的箱子,每个箱子至少一个,问有几种情况? C n − 1 m − 1 = C 9 2 = 36 C_{n-1}^{m-1}=C_{9}^{2}=36 Cn1m1=C92=36

空盒子推广(添元素隔板法)

例2.现在有10个球,要放进3个盒子里,并允许空盒子。考虑10+3个球的情况:

●|●|●●●●●●●●●●●、●|●●|●●●●●●●●●●、●|●●●|●●●●●●●●●、●|●●●●|●●●●●●●●、●|●●●●●|●●●●●●●、…

每个盒子的球都被拿走一个,得到一种情况,如此类推:

||●●●●●●●●●●、|●|●●●●●●●●●、|●●|●●●●●●●●、|●●●|●●●●●●●、|●●●●|●●●●●●、…

则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?

C n + m − 1 m − 1 = C 12 2 = 66 C_{n+m-1}^{m-1}=C_{12}^{2}=66 Cn+m1m1=C122=66

n个球放进k个盒子的方法总数(允许空盒子),等同于n+k个球放进k个盒子的方法总数(不允许空盒子),即 ( n + k − 1 k − 1 ) {\displaystyle {\binom {n+k-1}{k-1}}} (k1n+k1)

问题等价于求 x 1 + x 2 + . . . + x k = n {\displaystyle x_{1}+x_{2}+...+x_{k}=n} x1+x2+...+xk=n的可行解数,其中 x 1 , x 2 , . . . , x k {\displaystyle x_{1},x_{2},...,x_{k}} x1,x2,...,xk为非负整数。

隔板法应用

添元素隔板法

例3.把10个相同的小球放到3个不同的箱子,第一个箱子至少1个,第二个箱子至少3个,第3个箱子可以为空,有几种情况?

分析: 我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球(即补充了一个球),则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法? C 8 2 = 28 C_{8}^{2}=28 C82=28

减元素隔板法

例4. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。

分析:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,再把剩下的球分成4组,每组至少1个,由例1知方法有 C 13 3 = 286 C_{13}^{3}=286 C133=286种.

添板插板法

例5.有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等,这类数共有()个?

分析:因为前2位唯一确定了整个序列,只要求出前两位的所有情况即可,设前两位为a和b

显然a + b <= 9,且a不为0.

1_1_1_1_1_1_1_1_1_ _ 1代表9个1,- 代表10个空位
我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有 C 10 2 = 45 C_{10}^{2}=45 C102=45

选板法

例6.有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法?

分析:o_o_o_o_o_o_o_o_o_o o代表10个糖,_ 代表9个空,所以10块糖,9个空,插入9块隔板,每个板都可以选择放或不放,相邻两板间的糖一天吃掉,这样共有

2 9 = 512 2^9=512 29=512啦.

分类插板法

例7.小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?

此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论
最多吃5天,最少吃1天
1:吃1天或是5天,各一种吃法 一共2种情况
2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况? C 10 1 = 10 C_{10}^{1}=10 C101=10
3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? C 8 2 = 28 C_{8}^{2}=28 C82=28
4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天? C 6 3 = 20 C_{6}^{3}=20 C63=20
所以一共是 2+10+28+20=60 种

二次插板法

例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?
-o-o-o-o-o-o- 三个节目abc
可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位
所以一共是 C 7 1 × C 8 1 × C 9 1 = 504 C_{7}^{1}×C_{8}^{1}×C_{9}^{1}=504 C71×C81×C91=504

参考

维基百科-隔板法
排列组合

  • 15
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值