CSS 字体图标

本文介绍了一种常见的Web设计技巧,即将图标打包为字体库以减少网页加载请求,提高加载速度。这种方式利用了字体的矢量特性,确保图标在任意大小下都能保持清晰。此外,文章还推荐了几款生成自定义图标字体库的工具,如FontAwesome、IconFont、IcoMoon,以及SVG素材网站。

原理 :常见的是把网页常用的一些小的图标,借助工具帮我们生成一个字体包,然后就可以像使用文字一样使用图标了。

优点:

1、将所有图标打包成字体库,减少请求;

2、具有矢量性,可保证清晰度;

3、使用灵活,便于维护;


Font Awesome 使用介绍

http://fontawesome.dashgame.com/

定制自已的字体图标库

http://iconfont.cn/

https://icomoon.io/

SVG素材

http://www.iconsvg.com/

内容概要:本书《Pattern Recognition and Machine Learning》系统阐述了模式识别与机器学习领域的基本理论与方法,强调概率模型与贝叶斯推理的核心地位。书中涵盖的主要内容包括概率分布、线性回归与分类、神经网络、核方法、支持向量机、图模型、EM算法、变分推断、蒙特卡洛采样方法(如Metropolis-Hastings和混合蒙特卡洛)以及连续隐变量模型(如PCA与独立成分分析)等。全书注重概念与原理的深入解释,并融合大量实例与图形辅助理解,同时提供配套软件资源用于实践。; 适合人群:具备一定数学基础(如线性代数、概率统计)和编程能力,面向高年级本科生、研究生及从事机器学习研究与应用的科研人员;尤其适合希望从理论层面深入理解主流机器学习算法的学习者。; 使用场景及目标:①掌握机器学习中经典算法的概率建模思想与数学推导过程;②理解图模型中的条件独立性判断、因子分解、消息传递机制;③学习复杂分布下的近似推断技术(如变分法与MCMC)及其应用场景;④为后续研究深度学习、强化学习或相关领域打下坚实的理论基础。; 阅读建议:此书理论性强,建议结合练习题进行深入学习,优先完成带“www”标记的在线习题以检验理解程度。对于重点章节(如第2章概率分布、第8章图模型、第11章蒙特卡洛方法),应仔细推导公式并尝试复现算法,配合Matlab工具包实践可显著提升学习效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值