0x07 内容简介与例题习题

《算法竞赛进阶指南》读书笔记汇总
这里面是我在阅读《算法竞赛进阶指南》这本书时的一些思考,有兴趣可以瞧瞧!
如若发现什么问题,可以通过评论或者私信作者提出。希望各位大佬不吝赐教!

贪心的基本思想

贪心是一种在每次决策时采取当前意义下最优策略的算法。一般通过猜测得出策略之后,加以证明即可使用。通常的证明方法有以下几种:
反证法
邻项交换法(通过交换相邻两项,证明原决策比交换之后的决策更优)
决策包容性
范围扩展(证明任何对局部最优策略作用范围的扩展都不会造成整体结果变差)

那我们直接来看几道例题吧。

【例题】防晒(AcWing110)

题目链接
思路:
首先给出贪心策略:按照 m i n s p f minspf minspf递减的顺序把奶牛排序,依次考虑每只奶牛。对于每头奶牛,找到一瓶还有剩余的且 s p f spf spf值最大的防晒霜去用。
接下来我们来证明这个策略的正确性。这里使用范围扩展证明,考虑这一步策略的作用范围扩展到其他奶牛之后的影响。由于奶牛已经按照 m i n s p f minspf minspf值递减的顺序排序,所以每一瓶大于当前奶牛 m i n s p f minspf minspf值的防晒霜,都会大于之后奶牛的 m i n s p f minspf minspf值。那么也就是说, 对于当前奶牛可以使用的任意两瓶防晒霜而言,假设这两瓶防晒霜是 x , y x,y x,y,如果 s p f x < s p f y spf_{x}<spf_{y} spfx<spfy,那么对于之后的奶牛而言,对于这两瓶防晒霜,只有三种可能情况, x , y x,y x,y都能用、 x , y x,y x,y都不能用或者 x x x能用 y y y不能用。如果 x , y x,y x,y都不能用或者 x x x能用 y y y不能用,那么正确性显然。如果是 x , y x,y x,y都能用的情况,那么满足当前的奶牛与满足之后的奶牛是等价的,因为每只奶牛对答案的贡献是等价的,所以这个策略不会使得结果变差。

AC代码:

#include<bits/stdc++.h>
#define N 2505

using namespace std;

int n,m;
struct node{
    int mi,mx;
    bool operator < (const node& c)const{
        return mi > c.mi;
    }
}cow[N];

struct Node{
    int spf,cover;
    bool operator < (const Node& b) const{
        return spf > b.spf;
    }
}spfs[N];

void solve(){
    cin >> n >> m;
    for(int i = 1;i <= n;i ++)
        cin >> cow[i].mi >> cow[i].mx;
    for(int i = 1;i <= m;i ++)
        cin >> spfs[i].spf >> spfs[i].cover;

    sort(cow + 1,cow + 1 + n);
    sort(spfs + 1,spfs + 1 + m);

    int ans = 0;
    for(int i = 1;i <= n;i ++){
        for(int j = 1;j <= m;j ++){
            if(spfs[j].spf <= cow[i].mx && spfs[j].spf >= cow[i].mi && spfs[j].cover){
                ans ++;
                spfs[j].cover --;
                break;
            }
        }
    }

    cout << ans << endl;
}

int main(){
    solve();
    return 0;
}

【例题】国王游戏(AcWing114)

题目链接
思路:
首先给出贪心策略,按照每个大臣左、右手上数的乘积从小到大排序,就是最优排队方案。
接下来使用邻项交换法证明这个策略的正确性。
对于任意一种排队顺序,设 n n n名大臣左右手上的数字分别是 A [ 1 ] . . . A [ n ] A[1]...A[n] A[1]...A[n] B [ 1 ] . . . B [ n ] B[1]...B[n] B[1]...B[n],国王手里的数字是 A [ 0 ] A[0] A[0] B [ 0 ] B[0] B[0]
假设我们交换顺序的两位大臣是 i i i i + 1 i + 1 i+1,那么在交换之前这两位大臣获得的奖励分别为:
1 B [ i ] ∗ ∏ j = 0 i − 1 A [ j ] \frac{1}{B[i]}*\prod \limits_{j=0}^{i-1}A[j] B[i]1j=0i1A[j] A [ i ] B [ i + 1 ] ∗ ∏ j = 0 i − 1 A [ j ] \frac{A[i]}{B[i + 1]}*\prod \limits_{j=0}^{i-1}A[j] B[i+1]A[i]j=0i1A[j]
交换之后两位大臣获得的奖励为:
1 B [ i + 1 ] ∗ ∏ j = 0 i − 1 A [ j ] \frac{1}{B[i+1]}*\prod \limits_{j =0}^{i-1}A[j] B[i+1]1j=0i1A[j] A [ i + 1 ] B [ i ] ∗ ∏ j = 0 i − 1 A [ j ] \frac{A[i+1]}{B[i]}*\prod \limits_{j=0}^{i-1}A[j] B[i]A[i+1]j=0i1A[j]
我们要比较交换前后的最大值变换情况,其实就是比较下面两个式子:
m a x ( 1 B [ i ] , A [ i ] B [ i + 1 ] ) max(\frac{1}{B[i]}, \frac{A[i]}{B[i+1]}) max(B[i]1,B[i+1]A[i]) m a x ( 1 B [ i + 1 ] , A [ i + 1 ] B [ i ] ) max(\frac{1}{B[i +1]}, \frac{A[i+1]}{B[i]}) max(B[i+1]1,B[i]A[i+1])
我们把他们同时乘上 B [ i ] ∗ B [ i + 1 ] B[i]*B[i+1] B[i]B[i+1]得到:
m a x ( B [ i + 1 ] , B [ i ] ∗ A [ i ] ) max(B[i+1], B[i]*A[i]) max(B[i+1],B[i]A[i]) m a x ( B [ i ] , B [ i + 1 ] ∗ A [ i + 1 ] ) max(B[i], B[i+1]*A[i+1]) max(B[i],B[i+1]A[i+1])
由于所有的数都是正整数,那么 B [ i + 1 ] ≤ B [ i + 1 ] ∗ A [ i + 1 ] B[i+1] \le B[i+1]*A[i+1] B[i+1]B[i+1]A[i+1] B [ i ] ≤ B [ i ] ∗ A [ i ] B[i]\le B[i]*A[i] B[i]B[i]A[i]
所以只有当 A [ i ] ∗ B [ i ] ≤ A [ i + 1 ] ∗ B [ i + 1 ] A[i]*B[i]\le A[i+1]*B[i+1] A[i]B[i]A[i+1]B[i+1],交换前更优。也就是说,只要存在逆序对,那么交换逆序对可以使得情况变优。当无法交换也即按顺序时,为最优局面。得证。
使用这个贪心策略之后,用高精度写一下就好了。(高精好麻烦呜呜呜

AC代码:

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef pair<int, int> PII;

const int N = 1005, base = 10000;

PII nums[N];

void output(vector<int>& a)
{ 
    printf("%d", a.back());
    for (int i = a.size() - 2; i >= 0; i -- )
        printf("%04d", a[i]);
    puts("");
}

vector<int> mul(vector<int> a, int b)
{
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        a[i] = a[i] * b + t;
        t = a[i] / base;
        a[i] %= base;
    }
    while(t)
    {
        a.push_back(t % base);
        t /= base;
    }
        
    return a;
}

vector<int> div(vector<int> a, int b)
{
    int t = 0;
    for (int i = a.size() - 1; i >= 0; i -- )
    {
        a[i] += t * base;
        t = a[i] % b;
        a[i] /= b;
    }
    while(a.size() && a.back() == 0) a.pop_back();
    if (a.size() == 0) a.push_back(0);
    return a;
}

vector<int> max_vec(vector<int> a, vector<int> b)
{
    if (a.size() == b.size())
    {
        for (int i = a.size() - 1; i >= 0; i -- )
            if (a[i] > b[i]) return a;
            else if(b[i] > a[i]) return b;
        return a;
    }
    else if(a.size() > b.size()) return a;
    else return b;
}

int main()
{
    int n;
    scanf("%d", &n); 
    for (int i = 0; i <= n; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        nums[i] = {a * b, b};
    }
    sort(nums + 1, nums + 1 + n);
    
    vector<int> res(1, 1);
    vector<int> ans(1, 0);
    for (int i = 0; i <= n; i ++ )
    {
        if (i)
    	{
    		ans = max_vec(ans, div(res, nums[i].second));
		}
        res = mul(res, nums[i].first / nums[i].second);
	}
    
    output(ans);
    
    return 0;
}

未完成题目

【例题】给树染色(AcWing115)

【练习】任务(AcWing127)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值