机器学习—模型估计与优化—线性模型—最小二乘估计

最小二乘估计 Least squares estimation

最小二乘法是一种基于误差平方和最小化的参数估计方法

最小二乘估计法,又称最小平方法,是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘估计法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

Problems to be solved

  1. 模型求解。
  2. 参数估计。
  3. 待估计量的数值是不随着时间改变的。

Theoretical deduction

在这里插入图片描述

向量形式为:

在这里插入图片描述

在这里插入图片描述
令F(β)对β的偏导数为0,可得方程组:
在这里插入图片描述
解此方程组可得:
在这里插入图片描述

Calaulation example

(待补充)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值