本小节我们将使用 InternStudio 中的 A100(1/4) * 2 机器和 internlm-xcomposer-7b 模型部署一个图文理解创作demo
1.环境准备
首先在 InternStudio 上选择 A100(1/4)*2 的配置,详情见:轻松玩转书生·浦语大模型internlm-demo 配置验证过程-CSDN博客
显卡改成:A100(1/4)*2配置
进入 conda
环境之后,使用以下命令从本地克隆一个已有的pytorch 2.0.1
的环境
/root/share/install_conda_env_internlm_base.sh xcomposer-demo
然后使用以下命令激活环境
conda activate xcomposer-demo
接下来运行以下命令,安装 transformers
、gradio
等依赖包。请严格安装以下版本安装!
pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate
2 模型下载
InternStudio平台的 share
目录下已经为我们准备了全系列的 InternLM
模型,所以我们可以直接复制即可。使用如下命令复制:
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory
3 代码准备
在 /root/code
git clone InternLM-XComposer
仓库的代码
cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d # 最好保证和教程的 commit 版本一致
4 Demo 运行
在终端运行以下代码
python examples/web_demo.py --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b --num_gpus 1 --port 6006
说明:这里 num_gpus 1
是因为InternStudio平台对于 A100(1/4)*2
识别仍为一张显卡。但如果有使用两张 3090 来运行此 demo,仍需将 num_gpus
设置为 2
运行中报错。按要求处理即可。
修改web_demo.py中第1127行,修改后代码,可以正常运行
demo.launch(share=True, server_name="0.0.0.0", server_port=6006,root_path=f'/proxy/6006')