书生·浦语大模型实战营第二期
文章平均质量分 62
cq99312254
DL
展开
-
Lagent 自定义你的 Agent 智能体
接下来,我们将使用 Lagent 的 Web Demo 来体验 InternLM2.5-7B-Chat 的智能体能力。首先,我们先使用 LMDeploy 部署 InternLM2.5-7B-Chat,并启动一个 API Server。然后,我们在另一个窗口中启动 Lagent 的 Web Demo。在等待两个 server 都完全启动(如下图所示)后,我们在。2.通过源码安装的方式安装 lagent。二、Lagent Web Demo 使用。原创 2024-10-10 22:46:00 · 228 阅读 · 0 评论 -
XTuner微调个人小助手认知
下面我们将根据项目的需求一步步的进行修改和调整吧!在 PART 1 的部分,由于我们不再需要在 HuggingFace 上自动下载模型,因此我们先要更换模型的路径以及数据集的路径为我们本地的路径。为了训练过程中能够实时观察到模型的变化情况,XTuner 贴心的推出了一个。原创 2024-10-07 22:45:55 · 942 阅读 · 0 评论 -
llamaindex+Internlm2 RAG实践
正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库。打开llamaindex_internlm.py 贴入以下代码。2.进入开发机后,创建新的conda环境,命名为。运行llamaindex_RAG.py。运行以下指令,新建一个python文件。1.使用30%的算力,新建开发机。4. 下载 NLTK 相关资源。然后安装相关基础依赖。运行以下命令,获取知识库。原创 2024-10-07 20:56:36 · 427 阅读 · 0 评论 -
第二次作业 创作图文并茂文章,图片理解,智能体
图片理解八戒智能体。原创 2024-04-02 16:18:03 · 179 阅读 · 0 评论 -
如何利用InternLM2的开源大型语言模型编写代码解释的agent
定义支持的环境和工具:首先需要定义agent将支持的编程语言和所需的工具(例如,代码解释器)。这可能涉及到特定编程语言的解释器或编译器以及用于代码分析和解释的外部库。采用ChatML格式:利用修改版的ChatML格式来处理agent的输入和输出,这种格式支持通过“环境”角色来实现通用的工具调用。可以通过特定关键词(如“interpreter”或“plugin”)在agent的响应中嵌入对工具的调用。准备训练数据:准备包含大量代码示例及其解释的训练数据集。原创 2024-03-28 20:24:28 · 365 阅读 · 0 评论