火柴排队
内存限制:128 MiB
时间限制:1000 ms
题目描述
涵涵有两盒火柴,每盒装有n 根火柴,每根火柴都有一个高度。 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑ ( a i − b i ) 2 ∑(ai-bi)^2 ∑(ai−bi)2其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。
请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
输入格式
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出格式
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
样例
样例1输入
4
2 3 1 4
3 2 1 4
样例1输出
1
样例2输入
4
1 3 4 2
1 7 2 4
样例2输出
2
数据范围与提示
输入输出样例说明1:
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
输入输出样例说明2:
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
数据范围:对于 10%的数据, 1 ≤ n ≤ 10;对于 30%的数据,1 ≤ n ≤ 100;对于 60%的数据,1 ≤ n ≤ 1,000;对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ maxlongint
分析
感谢C202207LYX提出问题,现将证明给出。
这是一道比较有意思的题目。
如果要使 ∑ ( a i − b i ) 2 ∑(ai-bi)^2 ∑(ai−bi)2最小,那么 ( a i − b i ) (ai-bi) (ai−bi)的值就因该为最小,为了保证所有 ( a i − b i ) (ai-bi) (ai−bi)的总值最小,就需要让序列 A A A中的第 k k k个数对应序列 B B B的第 k k k个数。
可以得出一个结论就是同序和≥乱序和≥逆序和
证明:
设有序数列k1kn,p1pn,取k1<k2、p1<p2 因此容易得到:k1p1+k2p2>k1p2+k2p1; 将上述不等式变形一下: k2p2-k2p1>k1p2-k1p1 即k2(p2-p1)>k1(p2-p1) ∵k2>k1,p2>p1 ∴k2(p2-p1)>k1(p2-p1) 证毕; 推广2中的结论到1中,乱序就是不断将顺序交换打乱的过程,最终结果符合2的结论,因此 顺序之乘>=乱序之乘,证毕
同序操作
首先定义一个结构体: n o d e node node
struct node {
LL val, num;
};
这里引入一个思想——离散化。
通过数据范围,可以得知:1 ≤ n ≤ 100,000,&& 0 ≤火柴高度≤ maxlongint,也就是说,火柴的高度分布比较稀疏,并且如果排序,那么 l o n g long long l o n g long long会直接溢出。、
此时接需要离散化
离散化
定义:离散化,把无限空间中有限的个体映射到有限的空间中去,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。例如:
原数据: 1 , 999 , 100000 , 15 1,999,100000,15 1,999,100000,15;处理后: 1 , 3 , 4