话说这个版块开了也真是不容易,调哭了qwq
本篇博客讲一下各大搜索,当然这里只讲一下比较高级的搜索。
用途
对于确定了起点和终点的题可以优化到一个 \sqrt{} 的复杂度。虽然十分难调,但是不影响用途。
题目选讲
Solution
一道非常经典的折半搜索。
我们先对礼物进行折半,先开始搜索前一半,就字面意思,爆搜选或者不选。
把所有没有超过的重量都给记录下来。
接着我们搜后一半,然后匹配前一半最大的且不超过的,这里可以用二分优化。
复杂度为 O ( n ⋅ 2 ⋅ 2 n 2 ) O(n\cdot2\cdot 2^{\frac{n}{2}}) O(n⋅2⋅22n)
是不会超时的,这种思路还挺妙的。
Code
#include<bits/stdc++.h>
#define mem(a,x) memset(a,x,sizeof(a))
#define int long long
using namespace std;
const int N=49;
int w,n,a[N],cnt,ans;
int wei[1<<25];
void DFS1(int step,int zl){
if(zl>w) return ;
if(step==(n/2)+1){
wei[++cnt]=zl;
return ;
}
DFS1(step+1,zl+a[step]);
DFS1(step+1,zl);
}
int f(int l,int r,int zl){
if(l==r) return wei[l];
if(l+1==r){
if(wei[r]+zl<=w) return wei[r];
else return wei[l];
}
int mid=(l+r)/2;
if(wei[mid]+zl<=w) return f(mid,r,zl);
else return f(l,mid-1,zl);
}
void DFS2(int step,int zl){
if(zl>w) return ;
if(step==n+1){
ans=max(ans,zl+f(1,cnt,zl));
return ;
}
DFS2(step+1,zl+a[step]);
DFS2(step+1,zl);
}
signed main(){
scanf("%lld %lld",&w,&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
sort(a+1,a+1+n);
DFS1(1,0);
sort(wei+1,wei+1+cnt);
DFS2((n/2)+1,0);
printf("%lld",ans);
return 0;
}
Solution
比较简单,不是特别难调,讲一下难点。
就直接终点和起点双向搜就对了。
对于棋盘状态,我们可以直接用 string
和 map
存下来。
这种方法对于那种不卡常数的题可以使用,因为这种题用 string
比较好转移,而且不容易写挂,相对于用整数来表示十分难写。
因为最多移 15 15 15 步,由于是双向,判断一下大不大于 7 7 7 步就可以了。
Code
#include<bits/stdc++.h>
#define mem(a,x) memset(a,x,sizeof(a))
#define askx(i) ((i-1)/5+1)
#define asky(i) ((i%5)?(i%5):(5))
using namespace std;
string ans;
map<string,int>k,z;
int Find(string x){
for(int i=1;i<=25;i++) if(x[i]=='*') return i;
}
bool check(string a,int i){
int C=Find(a);
if((abs(askx(i)-askx(C))==2 && abs(asky(i)-asky(C))==1) || (abs(askx(i)-askx(C))==1 && abs(asky(i)-asky(C))==2)) return 1;
return 0;
}
int BFS(int t,string x,string y){
queue<string>q;
q.push(x);
q.push(y);
z[x]=0,z[y]=0;
k[x]=t,k[y]=-t;
while(!q.empty()){
string opt=q.front();
q.pop();
if(z[opt]>7) return -1;
for(int i=1;i<=25;i++){
if(check(opt,i)){
string opt2=opt;
opt2[i]='*';
opt2[Find(opt)]=opt[i];
if(abs(k[opt2])!=t){
k[opt2]=k[opt];
z[opt2]=z[opt]+1;
q.push(opt2);
}
else if(k[opt]!=k[opt2]) return z[opt]+z[opt2]+1;
}
}
}
return -1;
}
int main(){
int T;
ans=" 111110111100*110000100000";
scanf("%d",&T);
for(int t=1;t<=T;t++){
string a=" ";
for(int i=1;i<=25;i++){
char k;
cin>>k;
a+=k;
}
if(a==ans){
printf("%d\n",0);
continue;
}
int x=BFS(t,a,ans);
if(x>15) x=-1;
printf("%d\n",x);
}
return 0;
}
Solution
不错的题。
Acwing 有 SPJ,学校 OJ 没有 SPJ,打傻了。
仍然是双向搜索。
直接从终点和起点乱搜就对了。
另外开一个 map
记录一下当前使用了那些操作,如果是从终点过来的要反着存,合并的时候注意一下就好。
Code
#include<bits/stdc++.h>
#define re register
#define il inline
#define askx(i) ((i-1)/3+1)
#define asky(i) ((i%3)?(i%3):(3))
using namespace std;
typedef long long LL;
string a,ans;
map<string,int>g,dp;
map<string,string>Lj;
il int findx(string x){for(re int i=1;i<=9;i++) if(x[i]=='x') return i;}
il bool Canu(string opt){int u=findx(opt);return askx(u)>1;}
il bool Canl(string opt){int u=findx(opt);return asky(u)>1;}
il bool Cand(string opt){int u=findx(opt);return askx(u)<3;}
il bool Canr(string opt){int u=findx(opt);return asky(u)<3;}
il string Changeu(string x){int u=findx(x);swap(x[u],x[u-3]);return x;}
il string Changel(string x){int u=findx(x);swap(x[u],x[u-1]);return x;}
il string Changed(string x){int u=findx(x);swap(x[u],x[u+3]);return x;}
il string Changer(string x){int u=findx(x);swap(x[u],x[u+1]);return x;}
il string BFS(string x,string y){
queue<string>q;
q.push(x),q.push(y);
g[x]=114514,g[y]=-114514;
while(!q.empty()){
string opt=q.front();
q.pop();
if(dp[opt]>16) return "unsolvable";
string opt2,res;
if(Canu(opt)){
opt2=Changeu(opt);
if(abs(g[opt2])!=114514){
g[opt2]=g[opt];
dp[opt2]=dp[opt]+1;
if(g[opt]==114514) Lj[opt2]=Lj[opt]+'u';
else Lj[opt2]='d'+Lj[opt];
q.push(opt2);
}
else if(g[opt2]!=g[opt]){
if(g[opt]==114514) res+=Lj[opt],res+='u',res+=Lj[opt2];
else res+=Lj[opt2],res+='d',res+=Lj[opt];
return res;
}
}
if(Canl(opt)){
opt2=Changel(opt);
if(abs(g[opt2])!=114514){
g[opt2]=g[opt];
dp[opt2]=dp[opt]+1;
if(g[opt]==114514) Lj[opt2]=Lj[opt]+'l';
else Lj[opt2]='r'+Lj[opt];
q.push(opt2);
}
else if(g[opt2]!=g[opt]){
if(g[opt]==114514) res+=Lj[opt],res+='l',res+=Lj[opt2];
else res+=Lj[opt2],res+='r',res+=Lj[opt];
return res;
}
}
if(Cand(opt)){
opt2=Changed(opt);
if(abs(g[opt2])!=114514){
g[opt2]=g[opt];
dp[opt2]=dp[opt]+1;
if(g[opt]==114514) Lj[opt2]=Lj[opt]+'d';
else Lj[opt2]='u'+Lj[opt];
q.push(opt2);
}
else if(g[opt2]!=g[opt]){
if(g[opt]==114514) res+=Lj[opt],res+='d',res+=Lj[opt2];
else res+=Lj[opt2],res+='u',res+=Lj[opt];
return res;
}
}
if(Canr(opt)){
opt2=Changer(opt);
if(abs(g[opt2])!=114514){
g[opt2]=g[opt];
dp[opt2]=dp[opt]+1;
if(g[opt]==114514) Lj[opt2]=Lj[opt]+'r';
else Lj[opt2]='l'+Lj[opt];
q.push(opt2);
}
else if(g[opt2]!=g[opt]){
if(g[opt]==114514) res+=Lj[opt],res+='r',res+=Lj[opt2];
else res+=Lj[opt2],res+='l',res+=Lj[opt];
return res;
}
}
}
return "unsolvable";
}
int main(){
char k;
a=" ";
ans=" 12345678x";
for(re int i=1;i<=9;i++) cin>>k,a+=k;
cout<<BFS(a,ans);
return 0;
}
Solution
搜索好题,考虑可以位数少,可以增加一个光标的状态。
当然这个题数据有一点恶心,所以使用整数,记得由于光标在每一个位置上都可以,所以可以增加一个维记录光标,传终点的参也要传六个,因为最后在哪一个光标上都可以。
Code
#include<bits/stdc++.h>
#define il inline
#define re register
#define inf 0x3f3f3f3f
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
int x,y;
int pow10[7]={1000000,100000,10000,1000,100,10,1};
int ans=inf;
int f[1000000][7],dp[1000000][7];
struct node{
int x;
int gb;
};
il int BFS(int x,int y){
queue<node>q;
q.push((node){x,1});
for(int i=1;i<=6;i++) q.push((node){y,i}),f[y][i]=-1;
f[x][1]=1;
if(x==y) return 0;
while(!q.empty()){
node opt=q.front();
q.pop();
if(opt.gb!=1){
node opt2=opt;
int u=opt2.x/pow10[1],v=opt2.x%pow10[opt2.gb-1]/pow10[opt2.gb];
opt2.x=opt2.x-u*pow10[1]-v*pow10[opt2.gb]+u*pow10[opt2.gb]+v*pow10[1];
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
if(opt.gb!=6){
node opt2=opt;
int u=opt2.x%pow10[5],v=opt2.x%pow10[opt2.gb-1]/pow10[opt2.gb];
opt2.x=opt2.x-u*pow10[6]-v*pow10[opt2.gb]+u*pow10[opt2.gb]+v*pow10[6];
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
if((opt.x%pow10[opt.gb-1]/pow10[opt.gb])!=0){
node opt2=opt;
opt2.x-=pow10[opt.gb];
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
if((opt.x%pow10[opt.gb-1]/pow10[opt.gb])!=9){
node opt2=opt;
opt2.x+=pow10[opt.gb];
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
if(opt.gb!=1){
node opt2=opt;
opt2.gb--;
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
if(opt.gb!=6){
node opt2=opt;
opt2.gb++;
if(!f[opt2.x][opt2.gb]){
f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
q.push(opt2);
}
else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;
}
}
return -1;
}
int main(){
cin>>x>>y;
printf("%d",BFS(x,y));
return 0;
}