搜索-经典&有趣

3 篇文章 0 订阅
1 篇文章 0 订阅
  • 前言

话说这个版块开了也真是不容易,调哭了qwq

本篇博客讲一下各大搜索,当然这里只讲一下比较高级的搜索。

  • 双向&折半搜索

用途

对于确定了起点和终点的题可以优化到一个 \sqrt{} 的复杂度。虽然十分难调,但是不影响用途。

题目选讲

Solution

一道非常经典的折半搜索。

我们先对礼物进行折半,先开始搜索前一半,就字面意思,爆搜选或者不选。

把所有没有超过的重量都给记录下来。

接着我们搜后一半,然后匹配前一半最大的且不超过的,这里可以用二分优化。

复杂度为 O ( n ⋅ 2 ⋅ 2 n 2 ) O(n\cdot2\cdot 2^{\frac{n}{2}}) O(n222n)

是不会超时的,这种思路还挺妙的。

Code

#include<bits/stdc++.h>
#define mem(a,x) memset(a,x,sizeof(a)) 
#define int long long
using namespace std;
const int N=49;
int w,n,a[N],cnt,ans;
int wei[1<<25];
void DFS1(int step,int zl){
	if(zl>w) return ;
	if(step==(n/2)+1){
		wei[++cnt]=zl;
		return ;
	}
	DFS1(step+1,zl+a[step]);
	DFS1(step+1,zl);
}
int f(int l,int r,int zl){
	if(l==r) return wei[l];
	if(l+1==r){
		if(wei[r]+zl<=w) return wei[r];
		else return wei[l];
	}
	int mid=(l+r)/2;
	if(wei[mid]+zl<=w) return f(mid,r,zl);
	else return f(l,mid-1,zl);
}
void DFS2(int step,int zl){
	if(zl>w) return ;
	if(step==n+1){
		ans=max(ans,zl+f(1,cnt,zl));
		return ;
	}
	DFS2(step+1,zl+a[step]);
	DFS2(step+1,zl);
}
signed main(){
	scanf("%lld %lld",&w,&n);
	for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
	sort(a+1,a+1+n);
	DFS1(1,0);
	sort(wei+1,wei+1+cnt);
	DFS2((n/2)+1,0);
	printf("%lld",ans);
	return 0;
}

Solution

比较简单,不是特别难调,讲一下难点。

就直接终点和起点双向搜就对了。

对于棋盘状态,我们可以直接用 stringmap 存下来。

这种方法对于那种不卡常数的题可以使用,因为这种题用 string 比较好转移,而且不容易写挂,相对于用整数来表示十分难写。

因为最多移 15 15 15 步,由于是双向,判断一下大不大于 7 7 7 步就可以了。

Code

#include<bits/stdc++.h>
#define mem(a,x) memset(a,x,sizeof(a))
#define askx(i) ((i-1)/5+1)
#define asky(i) ((i%5)?(i%5):(5))
using namespace std;
string ans;
map<string,int>k,z;
int Find(string x){
	for(int i=1;i<=25;i++) if(x[i]=='*') return i;
}
bool check(string a,int i){
	int C=Find(a);
	if((abs(askx(i)-askx(C))==2 && abs(asky(i)-asky(C))==1) || (abs(askx(i)-askx(C))==1 && abs(asky(i)-asky(C))==2)) return 1;
	return 0;
}
int BFS(int t,string x,string y){
	queue<string>q;
	q.push(x);
	q.push(y);
	z[x]=0,z[y]=0;
	k[x]=t,k[y]=-t;
	while(!q.empty()){
		string opt=q.front();
		q.pop();
		if(z[opt]>7) return -1;
		for(int i=1;i<=25;i++){
			if(check(opt,i)){
				string opt2=opt;
				opt2[i]='*';
				opt2[Find(opt)]=opt[i];
				if(abs(k[opt2])!=t){
					k[opt2]=k[opt];
					z[opt2]=z[opt]+1;
					q.push(opt2);	
				}
				else if(k[opt]!=k[opt2]) return z[opt]+z[opt2]+1;
			}
		}
	}
	return -1;
} 
int main(){
	int T;
	ans=" 111110111100*110000100000";
	scanf("%d",&T);
	for(int t=1;t<=T;t++){
		string a=" ";
		for(int i=1;i<=25;i++){
			char k;
			cin>>k;
			a+=k;
		}
		if(a==ans){
			printf("%d\n",0);
			continue;
		}
		int x=BFS(t,a,ans);
		if(x>15) x=-1;
		printf("%d\n",x);
	}
	return 0;
}

Solution

不错的题。

Acwing 有 SPJ,学校 OJ 没有 SPJ,打傻了。

仍然是双向搜索。

直接从终点和起点乱搜就对了。

另外开一个 map 记录一下当前使用了那些操作,如果是从终点过来的要反着存,合并的时候注意一下就好。

Code

#include<bits/stdc++.h>
#define re register
#define il inline
#define askx(i) ((i-1)/3+1)
#define asky(i) ((i%3)?(i%3):(3))
using namespace std;
typedef long long LL;
string a,ans;
map<string,int>g,dp;
map<string,string>Lj;
il int findx(string x){for(re int i=1;i<=9;i++) if(x[i]=='x') return i;}
il bool Canu(string opt){int u=findx(opt);return askx(u)>1;}
il bool Canl(string opt){int u=findx(opt);return asky(u)>1;}
il bool Cand(string opt){int u=findx(opt);return askx(u)<3;}
il bool Canr(string opt){int u=findx(opt);return asky(u)<3;}
il string Changeu(string x){int u=findx(x);swap(x[u],x[u-3]);return x;}
il string Changel(string x){int u=findx(x);swap(x[u],x[u-1]);return x;}
il string Changed(string x){int u=findx(x);swap(x[u],x[u+3]);return x;}
il string Changer(string x){int u=findx(x);swap(x[u],x[u+1]);return x;}
il string BFS(string x,string y){
	queue<string>q;
	q.push(x),q.push(y);
	g[x]=114514,g[y]=-114514;
	while(!q.empty()){
		string opt=q.front();
		q.pop();
		if(dp[opt]>16) return "unsolvable";
		string opt2,res;
		if(Canu(opt)){
			opt2=Changeu(opt);
			if(abs(g[opt2])!=114514){
				g[opt2]=g[opt];
				dp[opt2]=dp[opt]+1;
				if(g[opt]==114514) Lj[opt2]=Lj[opt]+'u';
				else Lj[opt2]='d'+Lj[opt];
				q.push(opt2);
			}
			else if(g[opt2]!=g[opt]){
				if(g[opt]==114514) res+=Lj[opt],res+='u',res+=Lj[opt2];
				else res+=Lj[opt2],res+='d',res+=Lj[opt];
				return res;
			}	
		}
		if(Canl(opt)){
			opt2=Changel(opt);
			if(abs(g[opt2])!=114514){
				g[opt2]=g[opt];
				dp[opt2]=dp[opt]+1;
				if(g[opt]==114514) Lj[opt2]=Lj[opt]+'l';
				else Lj[opt2]='r'+Lj[opt];
				q.push(opt2);		
			}
			else if(g[opt2]!=g[opt]){
				if(g[opt]==114514) res+=Lj[opt],res+='l',res+=Lj[opt2];
				else res+=Lj[opt2],res+='r',res+=Lj[opt];
				return res;
			}			
		}
		if(Cand(opt)){
			opt2=Changed(opt);
			if(abs(g[opt2])!=114514){
				g[opt2]=g[opt];
				dp[opt2]=dp[opt]+1;
				if(g[opt]==114514) Lj[opt2]=Lj[opt]+'d';
				else Lj[opt2]='u'+Lj[opt];
				q.push(opt2);				
			}
			else if(g[opt2]!=g[opt]){
				if(g[opt]==114514) res+=Lj[opt],res+='d',res+=Lj[opt2];
				else res+=Lj[opt2],res+='u',res+=Lj[opt];
				return res;
			}			
		}
		if(Canr(opt)){
			opt2=Changer(opt);
			if(abs(g[opt2])!=114514){
				g[opt2]=g[opt];
				dp[opt2]=dp[opt]+1;
				if(g[opt]==114514) Lj[opt2]=Lj[opt]+'r';
				else Lj[opt2]='l'+Lj[opt];		
				q.push(opt2);		
			}
			else if(g[opt2]!=g[opt]){
				if(g[opt]==114514) res+=Lj[opt],res+='r',res+=Lj[opt2];
				else res+=Lj[opt2],res+='l',res+=Lj[opt];
				return res;
			}
		}
	}
	return "unsolvable";
}
int main(){
	char k;
	a=" ";
	ans=" 12345678x";
	for(re int i=1;i<=9;i++) cin>>k,a+=k;
	cout<<BFS(a,ans);
	return 0;
} 

Solution

搜索好题,考虑可以位数少,可以增加一个光标的状态。

当然这个题数据有一点恶心,所以使用整数,记得由于光标在每一个位置上都可以,所以可以增加一个维记录光标,传终点的参也要传六个,因为最后在哪一个光标上都可以。

Code

#include<bits/stdc++.h>
#define il inline
#define re register
#define inf 0x3f3f3f3f
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
int x,y;
int pow10[7]={1000000,100000,10000,1000,100,10,1};
int ans=inf;
int f[1000000][7],dp[1000000][7];
struct node{
	int x;
	int gb;
};
il int BFS(int x,int y){
	queue<node>q;
	q.push((node){x,1});
	for(int i=1;i<=6;i++) q.push((node){y,i}),f[y][i]=-1;
	f[x][1]=1;
	if(x==y) return 0;
	while(!q.empty()){
		node opt=q.front();
		q.pop();
		if(opt.gb!=1){
			node opt2=opt;
			int u=opt2.x/pow10[1],v=opt2.x%pow10[opt2.gb-1]/pow10[opt2.gb];
			opt2.x=opt2.x-u*pow10[1]-v*pow10[opt2.gb]+u*pow10[opt2.gb]+v*pow10[1];
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}
		if(opt.gb!=6){
			node opt2=opt;
			int u=opt2.x%pow10[5],v=opt2.x%pow10[opt2.gb-1]/pow10[opt2.gb];
			opt2.x=opt2.x-u*pow10[6]-v*pow10[opt2.gb]+u*pow10[opt2.gb]+v*pow10[6];
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}
		if((opt.x%pow10[opt.gb-1]/pow10[opt.gb])!=0){
			node opt2=opt;
			opt2.x-=pow10[opt.gb];
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}
		if((opt.x%pow10[opt.gb-1]/pow10[opt.gb])!=9){
			node opt2=opt;
			opt2.x+=pow10[opt.gb];
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}		
		if(opt.gb!=1){
			node opt2=opt;
			opt2.gb--;
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}
		if(opt.gb!=6){
			node opt2=opt;
			opt2.gb++;
			if(!f[opt2.x][opt2.gb]){
				f[opt2.x][opt2.gb]=f[opt.x][opt.gb];
				dp[opt2.x][opt2.gb]=dp[opt.x][opt.gb]+1;
				q.push(opt2);
			}
			else if(f[opt2.x][opt2.gb]!=f[opt.x][opt.gb]) return dp[opt2.x][opt2.gb]+dp[opt.x][opt.gb]+1;			
		}
	}
	return -1;
}
int main(){
	cin>>x>>y;
	printf("%d",BFS(x,y));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值