【总结】不定方程ax+by=c的解

先解方程ax+by=gcd(a,b)的特解,再还原到原方程,写出通解

方法:拓展欧几里得(递归降系数)

首先对于ax + by = gcd(a,b),当b=0时,x=1,y=0是一组解(递归算法出口)
对于一般情况:
ax1 + by1 = gcd (a, b)
bx2 + (a % b) y2 = gcd (b, a % b)

系数a,b 降低了(最终a%b为0),注意观察x1,y1,x2,y2数量关系(假定求得了x2,y2)

因为 gcd (a,b) = gcd (b, a % b)

所以 ax1 + by1 = bx2 + (a % b) y2

整理得 ax1 + by1 = bx2 + (a - (a / b) * b) y2

即 ax1 + by1 = ay2 + b( x2 - (a / b) y2)

所以x1 = y2 , y1 = x2 - (a / b) y2

将求得的x2 , y2 带入,就是x1 , y1 (注意a / b)

代码:

void exgcd(int a,int b,int &x,int &y,int &r) {
    if(b==0) {
        x=1,y=0,r=a;
        return;
    }
	exgcd(b,a%b,y,x,r);
    y-=x*(a/b);
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值