埃氏筛
用素数筛合数,代码简单,拓展性强。复杂度
O
(
n
∗
l
o
g
l
o
g
n
)
O(n*loglogn)
O(n∗loglogn),可以看作常数较大的n。
运用:对于求[l,r]的素数,可以用[1,
s
q
r
t
(
r
)
sqrt (r)
sqrt(r)]的所有素数来筛区间[l,r],相比直接求[1,r]的线性筛更优,因为线性筛对每个数有且仅能筛一个数,而这个数很有可能不在区间内,是无意义的。
void work() {
for(int i=2;i<=n;i++) {
if(!b[i]) {
pri[++cnt]=i;
for(int j=1;j<=n/i;j++) b[i*j]=1;
}
}
}
void euler() {
for(int i=2;i<=n;i++) phi[i]=i;
for(int i=2;i<=n;i++) {
if(phi[i]==i) {
for(int j=1;j<=n/i;j++)
phi[i*j]=phi[i*j]/i*(i-1);
}
}
}
线性筛
复杂度O(n),每个数有且仅被筛一次,可以配合欧拉函数在线性时间内求出函数值。
void work() {
for(int i=2;i<=m;i++) {
if(!b[i]) {
pri[++cnt]=i;
}
for(int j=1;j<=cnt;j++) {
if(1LL*i*pri[j]<=m) b[i*pri[j]]=1;
if(i%pri[j]==0||1LL*i*pri[j]>m) break;
}
}
}
void euler() {
for(int i=2;i<=n;i++) {
if(!phi[i]) {
phi[i]=i-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt;j++) {
if(1LL*i*pri[j]>n) break;
if(i%pri[j]==0) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
}
欧拉函数的几个性质:
https://www.cnblogs.com/henry-1202/p/10246196.html
A.
给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对。
GCD(x,y)即求x,y的最大公约数。
分析:本题配合线性筛,可以同时求出 ϕ ( n ) ϕ(n) ϕ(n)和 s u m [ n ] sum[n] sum[n](素数个数),然后找到两个互质的数x,y,x<=y,及质数k,xk<=n,则xk和yk就是一组数对。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e7+5;
long long n,cnt,phi[maxn],sum[maxn],pri[maxn],ans;
void euler() {
for(int i=2;i<=n;i++) {
sum[i]=sum[i-1];
if(!phi[i]) {
phi[i]=i-1;
pri[++cnt]=i;
sum[i]++;
}
for(int j=1;j<=cnt;j++) {
if(1LL*i*pri[j]>n) break;
if(i%pri[j]==0) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
ans=sum[n];
for(int i=2;i<=n;i++) {
ans+=phi[i]*sum[n/i]*2;
}
}
int main() {
scanf("%lld",&n);
euler();
printf("%lld",ans);
}
B.
给定两个整数l,r ,求闭区间 [l,r] 中相邻两个质数差值最小的数对与差值最大的数对。当存在多个时,输出靠前的素数对。
1<=l<=r<=2147483647,r-l<=1e6
分析:如前所说,由于[l,r]范围很小,所以用埃氏筛可以避免线性筛到r,而是直接用质数来筛这个范围,时间复杂度大大减小。
#include<bits/stdc++.h>
using namespace std;
const int N=1e6*2;
int l,r,pri[N],a[N],cnt,num,m;
bool b[N],c[N];
void work() {
for(int i=2;i<=m;i++) {
if(!b[i]) {
pri[++cnt]=i;
}
for(int j=1;j<=cnt;j++) {
if(1LL*i*pri[j]<=m) b[i*pri[j]]=1;
if(i%pri[j]==0||1LL*i*pri[j]>m) break;
}
}
}
int main() {
m=50000;
work();
while(~scanf("%d%d",&l,&r)) {
memset(c,0,sizeof(c));
num=0;
for(int i=1;i<=cnt;i++) {
int p=pri[i];
for(int j=(l-1)/p+1;j<=r/p;j++) if(j>1) c[p*j-l]=1;
}
for(int i=0;i<=r-l;i++)
if(!c[i]&&i+l>1) a[++num]=i+l;
if(num<=1) {
printf("There are no adjacent primes.\n");
continue;
}
int t1=0,t2=0;
for(int i=2;i<=num;i++) {
if(!t1||a[i]-a[i-1]<a[t1]-a[t1-1]) t1=i;
if(!t2||a[i]-a[i-1]>a[t2]-a[t2-1]) t2=i;
}
printf("%d,%d are closest, %d,%d are most distant.\n",a[t1-1],a[t1],a[t2-1],a[t2]);
}
}
C.
求不定方程:
1 x + 1 y = 1 n ! \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} x1+y1=n!1
的正整数解 ( x , y ) (x,y) (x,y)的数目。
分析:
原方程变形可得
x
y
−
n
!
(
x
+
y
)
=
0
xy-n!(x+y)=0
xy−n!(x+y)=0
(
n
!
)
2
+
x
y
−
n
!
(
x
+
y
)
=
(
n
!
)
2
(n!)^2+xy-n!(x+y)=(n!)^2
(n!)2+xy−n!(x+y)=(n!)2
(
x
−
(
n
!
)
2
)
(
y
−
(
n
!
)
2
)
=
(
n
!
)
2
(x-(n!)^2)(y-(n!)^2)=(n!)^2
(x−(n!)2)(y−(n!)2)=(n!)2
所以说只需求得 ( n ! ) 2 (n!)^2 (n!)2的约数个数即可。
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int N=1e6+5;
long long n,cnt,pri[N],ans=1;
bool b[N];
void work() {
for(int i=2;i<=n;i++) {
if(!b[i]) {
cnt++;
for(int j=1;j<=n/i;j++) b[i*j]=1;
for(long long p=i;p<=n;p*=i) pri[cnt]+=n/p,pri[cnt]%=mod;
}
}
}
int main() {
scanf("%lld",&n);
work();
for(int i=1;i<=cnt;i++) {
ans=1LL*ans*(2*pri[i]+1)%mod;
}
printf("%lld",ans);
}