【题解】「AHOI2013」 差异

题目描述
给定一个长度为 n n n 的字符串 S S S,令 T i T_i Ti 表示它从第 i i i 个字符开始的后缀。求 ∑ 1 < = i < j < = n n l e n ( T i ​ ) + l e n ( T j ​ ) − 2 × l c p ( T i ​ , T j ​ ) \sum_{1<=i<j<=n}^{n}len(Ti​)+len(Tj​)−2×lcp(Ti​,Tj​) 1<=i<j<=nnlen(Ti)+len(Tj)2×lcp(Ti,Tj)

solution:
主要是一个单调栈+后缀数组模板的运用。发现每个区间的值就是这个区间的最小值,而区间的最小值一般用单调栈来维护。

本人不是很会维护单调栈,所以当时找到了两种比较好的维护方法自己的wa了

法一.
由于是正序枚举,且是区间最小,所以若i<j,且height[i]>height[j],那么j后面的位置一定不会以height[i]作为高度,因为j更近,只要i能成为候选答案,j就会成为最优的答案。对于后面的点来说,只需满足j即可,所以i是冗余的,应该将i弹出。

所以这个单调栈一定是单调递增的。

我们考虑将右端点固定下来。设 f [ j ] f[j] f[j]表示以 j j j结尾的区间的贡献和。

那么我们怎么把 f [ j ] f[j] f[j]求出来呢?这个时候就要转移了:
f [ i ] = f [ p ] + ( i − p ) ∗ h [ i ] ( h [ p ] < h [ i ] ∣ p < i ) f[i]=f[p]+(i-p)*h[i](h[p]<h[i] | p<i) f[i]=f[p]+(ip)h[i]h[p]<h[i]p<i

注意是否严格递增都是对的。

#include<bits/stdc++.h>
#define int long long
using namespace std;
//建一个trie树 
//既然这样,那么lcp(a,b)等价于lca(a,b),为什么还要用height数组呢?
//建树的时间复杂度最坏是O(n^2)吗? 
const int N=5e5+5;
const int Maxchar=26;
char s[N];
int n,m,num,x[N],y[N],c[N],sa[N];
int h[N],height[N],rk[N];
int q[N],w[N],tp;
int res,res2,f[N];
void solve() {
	m=Maxchar;
	for(int i=1;i<=n;i++) c[x[i]=s[i]-'a'+1]++;
	for(int i=2;i<=m;i++) c[i]+=c[i-1];
	for(int i=n;i>=1;i--) sa[c[x[i]]--]=i; 
	for(int k=1;k<=n;k<<=1) {
		num=0;
		for(int i=n-k+1;i<=n;i++) y[++num]=i;
		for(int i=1;i<=n;i++) if(sa[i]>k) y[++num]=sa[i]-k;
		for(int i=1;i<=m;i++) c[i]=0;
		for(int i=1;i<=n;i++) c[x[i]]++;
		for(int i=2;i<=m;i++) c[i]+=c[i-1];
		for(int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i];
		for(int i=1;i<=n;i++) y[i]=x[i],x[i]=0;
		x[sa[1]]=1;num=1;
		for(int i=2;i<=n;i++) x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
		if(m==n) break;
		m=num;
	}
} 
void solve2() {
	int k=0;
	for (int i=1; i<=n; ++i) rk[sa[i]]=i;
	for (int i=1; i<=n; ++i) {
		if (rk[i]==1) continue;//第一名height为0
		if (k) --k;//h[i]>=h[i-1]-1;
		int j=sa[rk[i]-1];
		while (j+k<=n && i+k<=n && s[i+k]==s[j+k]) ++k;
		height[rk[i]]=k;//h[i]=height[rk[i]];
	}
}
void solve3() { //单调栈维护递增序列(计算过程有点恶心)
    res=n*(n-1)*(n+1)/2;    q[1]=-1,w[1]=1,tp=1;//(l,r],故不包括位置1 
	for(int i=2;i<=n;i++) { //1.计算lx和ex //2.递推计算f[x],其中f[x]表示以x为结尾的点对的贡献 
		while(tp>0&&height[i]<=q[tp]) {
		    tp--;
		}
		f[i]=f[w[tp]]+(i-w[tp])*height[i];
		q[++tp]=height[i],w[tp]=i;
		res2+=f[i]*2;
	}
}
signed main() {
	scanf("%s",s+1); n=strlen(s+1);
	solve();
	solve2();
	solve3();
    printf("%lld",res-res2);
} 

法二.
这个思路要抽象一些。

首先还是维护单调递增的栈。这里必须是不严格递增。

令L[i]表示i往左边最多扩展的位置,R[i]表示i往右边最多扩展的位置,则点i的贡献为 ( i − L [ i ] ) ∗ ( R [ i ] − i ) ∗ h e i g h t [ i ] (i-L[i])*(R[i]-i)*height[i] (iL[i])(R[i]i)height[i]

为什么是正确的呢?假如i与相邻的数不同,那么以h[i]扩展出来的左右端点一定不会重复。如果左右相等,我们仔细观察下面代码,发现L[i]=i(除了这段连续的数中最左边的数有可能往左拓展以外),而右端点都是相同的。此时我们可以发现恰好把每种可能的左端点都枚举了一遍,且没有重复。

总结:首先,我们根据区间最小值进行分类,分别计算答案。其次,我们不允许它向和它相等且在它前面的数扩展,有效避免了重复。

于是就解决了。

#include <cstdio>
#include <cstring>

typedef long long LL;
const int MN = 500005;

int N;
char str[MN];

int M;
int rk[MN], rk2[MN], SA[MN], SA2[MN];
int buk[MN], cnt;
int Height[MN];

void GetHeight() {
	int k = 0;
	for (int i = 1; i <= N; ++i) {
		if (rk[i] == 1) { k = Height[1] = 0; continue; }
		if (k) --k;
		int j = SA[rk[i] - 1];
		while (i + k <= N && j + k <= N && str[i + k] == str[j + k]) ++k;
		Height[rk[i]] = k;
	}
}

void Rsort() {
	for (int i = 1; i <= M; ++i) buk[i] = 0;
	for (int i = 1; i <= N; ++i) ++buk[rk[i]];
	for (int i = 1; i <= M; ++i) buk[i] += buk[i - 1];
	for (int i = N; i >= 1; --i) SA[buk[rk[SA2[i]]]--] = SA2[i];
}

void GetSA() {
	M = 26;
	for (int i = 1; i <= N; ++i) rk[i] = str[i] - 'a' + 1, SA2[i] = i;
	Rsort();
	for (int j = 1; j < N; j <<= 1) {
		int P = 0;
		for (int i = N - j + 1; i <= N; ++i) SA2[++P] = i;
		for (int i = 1; i <= N; ++i) if (SA[i] > j) SA2[++P] = SA[i] - j;
		Rsort();
		rk2[SA[1]] = P = 1;
		for (int i = 2; i <= N; ++i) {
			if (rk[SA[i]] != rk[SA[i - 1]] || rk[SA[i] + j] != rk[SA[i - 1] + j]) ++P;
			rk2[SA[i]] = P;
		}
		for (int i = 1; i <= N; ++i) rk[i] = rk2[i];
		M = P;
		if (M == N) break;
	}
	GetHeight();
}

int st[MN], t;
int L[MN], R[MN];

int main() {
	scanf("%s", str + 1);
	N = strlen(str + 1);
	GetSA();
	st[t = 1] = 1;
	for (int i = 2; i <= N; ++i) {
		while (t && Height[st[t]] > Height[i]) R[st[t--]] = i;
		L[i] = st[t];
		st[++t] = i;
	} while (t) R[st[t--]] = N + 1;
	LL Ans = (LL)(N - 1) * N * (N + 1) / 2;
	for (int i = 2; i <= N; ++i)
		Ans -= 2ll * (R[i] - i) * (i - L[i]) * Height[i];
	printf("%lld\n", Ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值