【题解】CF1553

CF1553D. Backspace

考点:尺取法+贪心

贪心策略是尽量选最多。因为 L1L2 奇偶性相同,所以选前面一段一定更优。

然后是开头段的情况,这个可以直接算, (n-m)&1
请添加图片描述

#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define PII pair<int,int>
#define All(x) x.begin(),x.end()
using namespace std;
const int mx=1e5;
char a[mx+5],b[mx+5];
int n,m;
int main() {
	int T; scanf("%d",&T);
	while(T--) {
		scanf("%s%s",a+1,b+1),n=strlen(a+1),m=strlen(b+1);
		a[++n]='1',b[++m]='1';
		int p=1,lastpos=0;
		int p2=1,lastpos2=-1;
		for(int i=1;i<=n;i++) {
			if(a[i]==b[p]&&(i-lastpos-1)%2==0) {
				for(;p<=m&&a[i]==b[p];i++,p++);
				lastpos=i-1; 
			}
		}
		for(int i=1;i<=n;i++) {
			if(a[i]==b[p2]&&((i-lastpos2-1)%2==0)) {
				for(;p2<=m&&a[i]==b[p2];i++,p2++);
				lastpos2=i-1;
			}
		}
		printf("%s\n",(p==m+1||p2==m+1)?"yes":"no");
	}
}

CF1553E Permutation Shift

考点:置换+暴力

先来看两个任意排列的最少交换次数,连边 rnk1[i]->rnk2[i] 答案就是 n-cntcnt 表示环的数量。

到本题来,其实就是将 p[i]->i 连边,移动后就是 p[i]->i+k

考虑 m的限制m<=n/3 <=> n-cnt<=n/3 <=> cnt>=2n/3 ,所以长度为 1 的环 >=n/3 ,故满足条件的 k<=3 。最后把满足 >=n/3k 暴力判断即可。

#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define PII pair<int,int>
#define All(x) x.begin(),x.end()
using namespace std;
const int mx=3e5+5;
int n,m,p[mx],vis[mx],tong[mx];
vector<int> ans;
bool check(int k) {
    int cnt=0;
    for(int i=0;i<n;i++) vis[i]=0;
    for(int i=0;i<n;i++) {
        if(vis[i]) continue;
        for(int j=i;!vis[j];j=(p[j]+k)%n) vis[j]=1;
        cnt++;
    }
    return n-cnt<=m;
}
int main() {
	int T; scanf("%d",&T);
	while(T--) {
	    scanf("%d%d",&n,&m),ans.clear();
	    for(int i=0;i<n;i++) tong[i]=0;
	    for(int i=0,x;i<n;i++) scanf("%d",&x),x--,p[i]=x,tong[(i+n-x)%n]++;
	   // for(int i=0;i<n;i++) printf("p[%d]=%d\n",i,p[i]);
	    for(int i=0;i<n;i++) {
	       // printf("tong[%d]=%d\n",i,tong[i]);
	        if(tong[i]>=n/3&&check(i)) {
	            ans.push_back(i);
	        }
	    }
	    printf("%d",ans.size());
	    for(auto x:ans) {
	        printf(" %d",x);
	    }
	    printf("\n");
	}
}

CF1553F Pairwise Modulo

考点 :分块/树状数组

树状数组比较难想。分块码量较大。

a[i] mod a[j] = a[i] - (a[i]/a[j]) * a[j]

注意到 a[i] 两两不同。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值