【学习笔记】[HDU 5407] CRB and Candies

题意:多组数据,每次给定一个 n ,求 l c m ( C ( n , 0 ) , C ( n , 1 ) , . . . , C ( n , n ) )   m o d   1 0 9 + 7 lcm(C(n,0),C(n,1),...,C(n,n))\bmod 10^9+7 lcm(C(n,0),C(n,1),...,C(n,n))mod109+7

solution:
直接算肯定不好算。

我们证明一个结论: l c m ( C ( n , 0 ) , C ( n , 1 ) , . . , C ( n , n ) ) = ( l c m ( 1 , 2 , . . . , n + 1 ) n + 1 ) lcm(C(n,0),C(n,1),..,C(n,n))=(\frac{lcm(1,2,...,n+1)}{n+1}) lcm(C(n,0),C(n,1),..,C(n,n))=(n+1lcm(1,2,...,n+1))

定义 vp(x) 表示 p 在 x 中的最大次幂。

看看 Kummer 定理:

vp(C(n+m,m)) = n + m 在 p 进制下进位的次数。

然后是一个推论:max(vp(C(n,x))) = n 在 p 进制下的位数 - 最低位不为 p-1 的位数。

可以贪心证明。

再回头看结论,我们需要证明:

v p ( l c m ( C ( n , 0 ) , C ( n , 1 ) , . . . , C ( n , n ) ) ) = v p ( l c m ( 1 , 2 , . . . , n + 1 ) n + 1 ) vp(lcm(C(n,0),C(n,1),...,C(n,n))) = vp(\frac{lcm(1,2,...,n+1)}{n+1}) vp(lcm(C(n,0),C(n,1),...,C(n,n)))=vp(n+1lcm(1,2,...,n+1))

先看右边式子。 vp(lcm(1,2,…,n+1)) = p 进制下 n+1 的位数

如果 n+1 = p^x , 那么 vp(lcm(C(n,0),C(n,1),…,C(n,n))) = 0, vp(\frac{n+1}{n+1} = 1) 。

如果 n+1 \ne p^x, 那么 vp(lcm(1,2,…,n+1)) = vp(lcm(1,2,…,n)) = n 在 p 进制下的位数 , vp(n+1) = n+1 在 p 进制下末尾 0 的个数 = n 在 p 进制下末尾 p-1 的个数 。

证毕哈哈。拿着这个式子 O(n) 预处理即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值