莫比乌斯反演 & 二项式反演

感觉莫比乌斯反演的可操作性不大。

一般地:

∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1] - 公式 1

欧拉反演:

∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d)=n dnϕ(d)=n - 公式 2

例一:求 ∑ i = 1 n gcd ⁡ ( i , n ) \sum_{i=1}^n\gcd(i,n) i=1ngcd(i,n)

sol:原式 = ∑ j ∣ n n j ϕ ( j ) \sum_{j|n}\frac{n}{j}\phi(j) jnjnϕ(j) (代入公式 2 即可)

例二:求 ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=1}^m\gcd(i,j) i=1nj=1mgcd(i,j)

sol:原式 = ∑ d = 1 n ⌊ n d ⌋ ⌊ m d ⌋ ϕ ( d ) \sum_{d=1}^n\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\phi(d) d=1ndndmϕ(d) (代入公式 2)

现在我们对一次的 gcd 有了一定了解。

考察一些高次结构 ?

第一步反演往往能够想到,而第二步通常需要一些 积性函数预处理

例子 :[国家集训队]Crash的数字表格 / JZPTAB

∑ i = 1 n ∑ j = 1 m lcm ( i , j ) \sum_{i=1}^n\sum_{j=1}^m\text{lcm}(i,j) i=1nj=1mlcm(i,j) ???

点拨:不难想到 两次整除分块 的做法

进一步思考,能否调换枚举方式 ?

o(n^{3/2}) -> o(n^{1/2})

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值