有n个任务,m个机器,对于第i个任务,必须在第si天之后开始,需要pi天完成且必须在第ei天之前完成。在一天中,一台机器只能干一个任务,一个任务只能被一台机器干。一个任务可以被中途打断,在不同的天用另外的机器完成。问你是否可以完成任务。
(n≤500,m≤200,1≤pi,si,ei≤500)
网络流的建模0 0
既然一个任务要pi天完成,那么虚拟一个源点s,向任务i连一条容量为pi的边,表示消耗的时间。第i个任务向si到ei的所有天数各连一条容量为一的边,因为每天的进度最多为1。最后,每天都向虚拟的汇点连一条容量为m的边,因为每天最多有m台机器工作。求出最大流,如果等于
∑pi
,那么可以完成任务。
#include<cstdio>
#include<vector>
#include<cstring>
#define MAXN 2010
using namespace std;
inline int Min(int a,int b)
{return a<b?a:b;}
struct E
{
int v,w,op;
E(){}
E(int a,int b,int c){v = a; w = b; op = c;}
};
vector<E> g[MAXN];
int d[MAXN],vd[MAXN],n,m,s,t,maxnum,pi,si,ei,N,flow,sum;
int aug(int i,int augco)
{
int j,augc = augco,mind = t-1,delta,sz = g[i].size();
if(i == t) return augco;
for(j = 0; j < sz; j++)
{
int v = g[i][j].v;
if(g[i][j].w)
{
if(d[i] == d[v]+1)
{
delta = Min(g[i][j].w,augc);
delta = aug(v,delta);
g[i][j].w -= delta;
g[v][g[i][j].op].w += delta;
augc -= delta;
if(d[1] >= t) return augco - augc;
if(augc == 0) break;
}
if(d[v] < mind) mind = d[v];
}
}
if(augc == augco)
{
vd[d[i]]--;
if(vd[d[i]] == 0) d[1] = t;
d[i] = mind+1;
vd[d[i]]++;
}
return augco - augc;
}
void sap()
{
memset(d,0,sizeof d);
memset(vd,0,sizeof vd);
vd[0] = t;
flow = 0;
while(d[1] < t)
flow += aug(1,0x3f3f3f3f);
}
int main()
{
int T;
scanf("%d",&T);
for(int o = 1; o <= T; o++)
{
sum = 0;
scanf("%d%d",&n,&m);
for(int i = 2; i <= n+1; i++)
{
scanf("%d%d%d",&pi,&si,&ei);
if(ei > maxnum) maxnum = ei;
sum += pi;
for(int j = si+n+1; j <= ei+n+1; j++)
{
g[i].push_back(E(j,1,g[j].size()));
g[j].push_back(E(i,0,g[i].size()-1));
}
g[1].push_back(E(i,pi,g[i].size()));
g[i].push_back(E(1,0,g[1].size()-1));
}
N = 1+n;
t = 1+n+maxnum+1;
for(int i = N+1; i <= N+maxnum; i++)
{
g[i].push_back(E(t,m,g[t].size()));
g[t].push_back(E(i,0,g[i].size()-1));
}
sap();
if(flow == sum) printf("Case %d: Yes\n\n",o);
else printf("Case %d: No\n\n",o);
for(int i = 1; i <= t; i++)
g[i].clear();
}
}