HDU3998 Sequence(DP+最大流)

已知一个长度为n的排列,先求出它的最长上升子序列的长度,设为k,再求长度为k的上升子序列有多少个。每个点只能经过一次。

自认为这道题比较像最短路计数。类似的,先求出最长上升子序列(O(n^2)都可以),然后把每个点拆点,容量为1,因为只能走一次。源点s连向dp[i]=1的点,dp[i]=k的点连向汇点t,当dp[i]=dp[j]+1且a[j]<a[i]时j向i连容量为1的边,该图的最大流就是长度为k的上升子序列个数。本题有坑的地方,没有给出n的范围,而且k有可能等于i。

#include<cstdio>
#include<cstring>
#include<vector>
#define MAXN 10010
using namespace std;
inline int Min(int a,int b)
{return a<b?a:b;}
inline int Max(int a,int b)
{return a>b?a:b;}
struct E
{
	int v,w,op;
	E(){}
	E(int a,int b,int c)
	{v = a; w = b; op = c;}
};
vector<E> g[100010];
int d[MAXN],vd[MAXN],dp[MAXN],n,k,s,t,flow,a[MAXN];
void get_dp()
{
	dp[1] = 1,k = 0;
	for(int i = 2; i <= n; i++)
	{
		dp[i] = 1;
		for(int j = 1; j < i; j++)
		{
			if(a[j]<a[i]) dp[i] = Max(dp[i],dp[j]+1);
		}
		if(dp[i] > k) k = dp[i];
	}
}
void build()
{
	for(int i = 1; i <= n; i++)
	{
		g[i].push_back(E(i+n,1,g[i+n].size()));
		g[i+n].push_back(E(i,0,g[i].size()-1));
		if(dp[i] == 1)
		{
			g[s].push_back(E(i,1,g[i].size()));
			g[i].push_back(E(s,0,g[s].size()-1));
		}
		if(dp[i] == k)//数据貌似有点坑,k应该有等于1的情况,多加了个else就WA了
		{
			g[i+n].push_back(E(t,1,g[t].size()));
			g[t].push_back(E(i+n,0,g[i+n].size()-1));
		}
		for(int j = 1; j < i; j++)
			if(dp[i] == dp[j]+1&&a[i] > a[j])
			{
				g[j+n].push_back(E(i,1,g[i].size()));
				g[i].push_back(E(j+n,0,g[j+n].size()-1));
			}
	}
}
int aug(int i,int augco)
{
	int j,augc = augco,mind = t-1,delta,sz = g[i].size();
	if(i == t) return augco;
	
	for(j = 0; j < sz; j++)
	{
		int v = g[i][j].v;
		if(g[i][j].w)
		{
			if(d[i] == d[v]+1)
			{
				delta = Min(augc,g[i][j].w);
				delta = aug(v,delta);
				g[i][j].w -= delta;
				g[v][g[i][j].op].w += delta;
				augc -= delta;
				if(d[s] >= t) return augco - augc;
				if(augc == 0) break;
			}
			if(d[v] < mind) mind = d[v];
		}
	}
	if(augc == augco)
	{
		vd[d[i]]--;
		if(vd[d[i]] == 0) d[s] = t;
		d[i] = mind+1;
		vd[d[i]]++;
	}
	return augco - augc;
}
void sap()
{
	flow = 0;
	memset(d,0,sizeof d);
	memset(vd,0,sizeof vd);
	while(d[s] < t)
		flow += aug(s,0x3f3f3f3f);
}
int main()
{
	while(scanf("%d",&n) != EOF)
	{
		memset(dp,0,sizeof dp);
		memset(a,0,sizeof a);
		for(int i = 1; i <= n; i++)
			scanf("%d",&a[i]);
		s = 2*n+1,t = s+1;
		get_dp();
		build();
		sap();
		printf("%d\n%d\n",k,flow);
		for(int i = 1; i <= t; i++)
			g[i].clear();
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值