POJ2308 Dearboy's Puzzle(DFS+BFS)

连连看的小游戏(只有4种牌),判断是否能全部消除。思路非常简单但是要注意减枝。
外层的DFS指定一张牌来想办法消除它,内层的BFS以指定的这张牌为起点,向四周扩展找到能和它配对的牌。然后每一对能消除的牌都考虑一遍。
1.连的线不能越界到格子外边;
2.有的牌只有奇数个,无解
3.出现了 A B 这种情况而且,AB分别只有两张,那么肯定无解;不加这个减枝会超时。
。。。。B A

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int mp[12][12],n,m,num[5],sum;
int dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
bool flag,vis[11][11];
char str[12];
void Init()
{
    memset(mp,0,sizeof mp);
    memset(num,0,sizeof num);
    sum = flag = 0;
}
struct Node
{
    int x,y,turn,d;
    Node(){}
    Node(int a,int b,int c,int dd)
    {x = a; y = b; turn = c; d = dd;}
};
bool inarea(int x,int y)
{
    if(x<1||y<1||x>n||y>m) return false;
    else return true;
}
void bfs(int x,int y,int w,Node *can,int &len)
{
    memset(vis,0,sizeof vis);
    queue<Node> Q;
    Q.push(Node(x,y,0,-1));
    vis[x][y] = 1;
    while(!Q.empty())
    {
        Node u = Q.front();
        Q.pop();
        if(mp[u.x][u.y] == w)
        {
            can[++len].x = u.x;
            can[len].y = u.y;
            continue;
        }
        for(int i = 0; i < 4; i++)
        {
            int tx = u.x+dir[i][0],ty = u.y+dir[i][1],tturn = 0;
            if(!inarea(tx,ty) || (mp[tx][ty] != -1&&mp[tx][ty] != w) || vis[tx][ty]) continue;
            if(u.d == i||u.d == -1)
                tturn = u.turn;
            else tturn = u.turn+1;
            if(tturn > 2) continue;
            vis[tx][ty] = 1;
            Q.push(Node(tx,ty,tturn,i));
        }
    }
}
bool check()
{
    for(int i = 1; i < n; i++)
        for(int j = 1; j < m; j++)
        {
            if(mp[i][j] != -1&&mp[i][j+1] != -1&&mp[i][j] != mp[i][j+1])
            {
                if(mp[i][j] == mp[i+1][j+1]&&mp[i][j+1] == mp[i+1][j]&&num[mp[i][j]] == 2&&num[mp[i][j+1]] == 2)
                    return false;
            }
        }
    return true;    
}
void dfs(int cur)
{
    if(cur == 0)
    {
        flag = 1;
        return;
    }
    if(flag) return;
    if(!check()) return;//减枝
    for(int i = 1; i <= n; i++)
    for(int j = 1; j <= n; j++)
    {
        if(flag) return;
        if(mp[i][j] != -1)
        {
            int w = mp[i][j],len = 0;
            Node can[110];
            mp[i][j] = -1;
            bfs(i,j,w,can,len);//搜索能与(i,j)配对的牌
            for(int k = 1; k <= len; k++)
            {
                mp[can[k].x][can[k].y] = -1;
                num[w] -= 2;
                dfs(cur-2);
                num[w] += 2;
                mp[can[k].x][can[k].y] = w;
            }
            mp[i][j] = w;
        }
    }   
}
int main()
{
    while(scanf("%d%d",&n,&m) != EOF&&n+m)
    {
        Init();
        for(int i = 1; i <= n; i++)
        {
            scanf("%s",str+1);
            for(int j = 1; j <= m; j++)
            {
                if(str[j] == '*') mp[i][j] = -1;
                else mp[i][j] = str[j]-'A'+1,num[str[j]-'A'+1]++;
            }
        }
        sum = num[1]+num[2]+num[3]+num[4];
        if(num[1]%2||num[2]%2||num[3]%2||num[4]%2)//有的牌只有奇数个,无解
        {   
            printf("no\n");
            continue;
        }
        dfs(sum);
        if(flag) printf("yes\n");
        else printf("no\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值