概念:
「堆 heap」是一种满足特定条件的完全二叉树(只有最底层的节点未被填满,且最底层节点尽量靠左 填充。),主要可分为下图所示的两种类型。
‧「大顶堆 max heap」:任意节点的值
≥
其子节点的值。
‧「小顶堆 min heap」:任意节点的值
≤
其子节点的值。
堆作为完全二叉树的一个特例,具有以下特性。
‧ 最底层节点靠左填充,其他层的节点都被填满。
‧ 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
‧ 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。
堆常用操作
需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优 先级排序的队列。
实际上,
堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列
。从使用角度来看, 我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本文对两者不做特别区分,统一使用“堆“来 命名。
堆的常用操作见下表 ,方法名需要根据编程语言来确定
方法名
| 描述 | 时间复杂度 |
push()
| 元素入堆 |
𝑂(
log
𝑛)
|
pop()
| 堆顶元素出堆 | 𝑂(log 𝑛) |
peek()
| 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | 𝑂(1) |
size()
| 获取堆的元素数量 | 𝑂(1) |
isEmpty()
| 判断堆是否为空 | 𝑂(1) |
描述时间复杂度的常见释义:
-
O(1) - 常数时间复杂度:
- 表示算法的执行时间是一个常数,不随输入规模的增加而变化。
- 示例:取数组中的第一个元素。
-
O(log n) - 对数时间复杂度:
- 表示算法的执行时间与输入规模的对数成正比。
- 示例:二分查找算法。
- 通常以2为底,如O(log 16)他的值就是4
-
O(n) - 线性时间复杂度:
- 表示算法的执行时间与输入规模成线性关系。
- 示例:遍历数组。
-
O(n log n) - 线性对数时间复杂度:
- 表示算法的执行时间与输入规模的对数乘以线性关系。
- 示例:快速排序、归并排序等基于分治思想的排序算法。
-
O(n^2) - 平方时间复杂度:
- 表示算法的执行时间与输入规模的平方成正比。
- 示例:简单的嵌套循环,如选择排序。
-
O(n^k) - 多项式时间复杂度:
- 表示算法的执行时间与输入规模的 k 次方成正比,其中 k 是常数。
- 示例:决策树算法。
-
O(2^n) - 指数时间复杂度:
- 表示算法的执行时间与输入规模的指数关系成正比。
- 示例:解决某些组合优化问题的朴素递归算法。
-
O(n!) - 阶乘时间复杂度:
- 表示算法的执行时间与输入规模的阶乘成正比。
- 示例:解决某些排列组合问题的朴素递归算法。
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
// 初始化小顶堆
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
//初始化大顶堆:任意节点大于他的子节点
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a,b)->b-a);
maxHeap.offer(1);
maxHeap.offer(2);
maxHeap.offer(3);
maxHeap.offer(4);
maxHeap.offer(5);
System.out.println(maxHeap.poll());//输出5
System.out.println(maxHeap.poll());//输出4
System.out.println(maxHeap.poll());//输出3
System.out.println(maxHeap.poll());//输出4
System.out.println(maxHeap.poll());//输出1
System.out.println(maxHeap.size());//输出0
System.out.println(maxHeap.isEmpty());//输出true
/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
System.out.println(minHeap.poll());//输出1
堆的实现(大顶堆)
1. 堆的存储与表示
我们在二叉树章节中学习到,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,
我们将采用
数组来存储堆
。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。
节点指针通过索引映射公式
来实现
。
如下图所示,给定索引
𝑖
,其左子节点索引为
2𝑖 + 1
,右子节点索引为
2𝑖 + 2
,父节点索引为
(𝑖 − 1)/2 (向下取整)。当索引越界时,表示空节点或节点不存在。
/* 数组表示下的二叉树类 */
public class ArrayBinaryTree {
private List<Integer> tree;
/* 构造方法 */
public ArrayBinaryTree(List<Integer> arr) {
tree = new ArrayList<>(arr);
}
/* 节点数量 */
public int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
public Integer val(int i) {
// 若索引越界,则返回 null ,代表空位
if (i < 0 || i >= size())
return null;
return tree.get(i);
}
/* 获取索引为 i 节点的左子节点的索引 */
public Integer left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
public Integer right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
public Integer parent(int i) {
return (i - 1) / 2;
}
//访问堆顶元素
int peek(){
return tree.get(0);
}
/* 层序遍历 */
public List<Integer> levelOrder() {
List<Integer> res = new ArrayList<>();
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != null)
res.add(val(i));
}
return res;
}
/* 深度优先遍历 */
private void dfs(Integer i, String order, List<Integer> res) {
// 若为空位,则返回
if (val(i) == null)
return;
// 前序遍历
if (order == "pre")
res.add(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.add(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.add(val(i));
}
/* 前序遍历 */
public List<Integer> preOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
public List<Integer> inOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
public List<Integer> postOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "post", res);
return res;
}
}
1.元素入堆
给定元素
val
,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能 已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点
,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,
从底至顶执行堆化
。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
设节点总数为
𝑛
,则树的高度为
𝑂(
log
𝑛)
。由此可知,堆化操作的循环轮数最多为
𝑂(
log
𝑛)
,
元素入堆操
作的时间复杂度为
𝑂(
log
𝑛)
。
/* 元素入堆 */
void push(int val) {
// 添加节点
tree.add(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取节点 i 的父节点索引
int p = parent(i);
// 当“越过根节点”或“节点无须修复”时,结束堆化
if (p < 0 || tree.get(i) <= tree.get(p))
break;
// 交换两节点
swap(i, p);
// 循环向上堆化
i = p;
}
}
void swap(int i, int j) {
int tmp = tree.get(i);
tree.set(i,tree.get(j));
tree.set(j,tmp);
}
2.堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的 索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
1. 交换堆顶元素与堆底元素(即交换根节点与最右叶节点)。
2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素)。
3. 从根节点开始,
从顶至底执行堆化
。
如下图所示,
“从顶至底堆化”的操作方向与“从底至顶堆化”相反
,我们将根节点的值与其两个子节点的 值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为
𝑂(
log
𝑛)
。
/* 元素出堆 */
int pop() {
// 判空处理
if (isEmpty())
throw new IndexOutOfBoundsException();
// 交换根节点与最右叶节点(即交换首元素与尾元素)
swap(0, size() - 1);
// 删除节点
int val = tree.remove(size() - 1);
// 从顶至底堆化
siftDown(0);
// 返回堆顶元素
return val;
}
/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = left(i), r = right(i), ma = i;
//左索引在数组长度内且左节点大于他的父节点
if (l < size() && tree.get(l) > tree.get(ma))
ma = l;//存储左索引
//右索引在数组长度内且左节点大于他的父节点或者左节点,在这一步就能找出三个值中最大的了
if (r < size() && tree.get(r) > tree.get(ma))
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)//最大的就是传入的
break;
// 交换两节点
swap(i, ma);
// 循环向下堆化
i = ma;
}
}
堆常见应用
‧
优先队列
:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为
𝑂(
log
𝑛) ,而建队操作为 𝑂(𝑛) ,这些操作都非常高效。
‧
堆排序
:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。
‧
获取最大的
𝑘
个元素
:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻 作为微博热搜,选取销量前 10 的商品等。
建堆操作
在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”
1.实现一:借助入堆操作实现
我们首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再 对该元素执行“从底至顶”堆化。
每当一个元素入堆,堆的长度就加一。由于节点是从顶到底依次被添加进二叉树的,因此堆是“自上而下” 地构建的。
设元素数量为
𝑛
,每个元素的入堆操作使用
𝑂(
log
𝑛)
时间,因此该建堆方法的时间复杂度为
𝑂(𝑛
log
𝑛)
2.实现二:通过遍历堆化实现
实际上,我们可以实现一种更为高效的建堆方法,共分为两步。
1. 将列表所有元素原封不动添加到堆中,此时堆的性质尚未得到满足。
2. 倒序遍历堆(即层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。
每当堆化一个节点后,以该节点为根节点的子树就形成一个合法的子堆
。而由于是倒序遍历,因此堆是“自 下而上”地被构建的。
之所以选择倒序遍历,是因为这样能够保证当前节点之下的子树已经是合法的子堆,这样堆化当前节点才是 有效的。
值得说明的是,
叶节点没有子节点,天然就是合法的子堆,因此无需堆化
。如以下代码所示,最后一个非叶节点是最后一个节点的父节点,我们从它开始倒序遍历并执行堆化。
/* 构造方法,根据输入列表建堆 */
MaxHeap(List<Integer> nums) {
// 将列表元素原封不动添加进堆
maxHeap = new ArrayList<>(nums);
// 堆化除叶节点以外的其他所有节点
//size()-1就是最后一个元素的下标,然后找到这个元素的父节点在数组中的索引
for (int i = parent(size() - 1); i >= 0; i--) {
/* 从节点 i 开始,从顶至底堆化 */
//方法是一个用于维护最大堆性质的操作,确保当前节点和其子树中的最大元素在当前节点的位置。
//在这个构造函数中,通过遍历所有的父节点,对每个父节点进行下沉操作,最终整个堆就满足了最大
//堆的性质。
siftDown(i);
}
}
复杂度分析
下面,我们来尝试推算第二种建堆方法的时间复杂度。
‧ 假设完全二叉树的节点数量为 𝑛 ,则叶节点数量为
(𝑛 + 1)/2
,其中
/
为向下整除。因此需要堆化的节点数量为 (𝑛 − 1)/2(需要堆化的节点也就是非叶子节点) 。
‧ 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 log
𝑛
。
将上述两者相乘,可得到建堆过程的时间复杂度为
𝑂(𝑛
log
𝑛)
。
但这个估算结果并不准确,因为我们没有
考虑到二叉树底层节点数量远多于顶层节点的性质
。
接下来我们来进行更为准确的计算。为了减小计算难度,假设给定一个节点数量为
𝑛
,高度为
ℎ
的“完美二 叉树”,该假设不会影响计算结果的正确性。
如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高 度”。因此,我们可以将各层的“节点数量 ×
节点高度”求和,
从而得到所有节点的堆化迭代次数的总和
。
Top‑K 问题
给定一个长度为 𝑛
无序数组
nums
,请返回数组中前
𝑘
大的元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法
方法一:遍历选择
我们可以进行下图所示的
𝑘
轮遍历,分别在每轮中提取第 1、
2
、
…
、
𝑘
大的元素,时间复杂度为
𝑂(𝑛𝑘)
。 此方法只适用于 𝑘 ≪ 𝑛
的情况,因为当 𝑘 与
𝑛
比较接近时,其时间复杂度趋向于
𝑂(𝑛
2
)
,非常耗时。
当
𝑘 = 𝑛
时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
方法二:排序
如下图所示,我们可以先对数组
nums
进行排序,再返回最右边的
𝑘
个元素,时间复杂度为
𝑂(𝑛
log
𝑛)
。
显然,该方法“超额”完成任务了,因为我们只需要找出最大的
𝑘
个元素即可,而不需要排序其他元素。
方法三:堆
我们可以基于堆更加高效地解决 Top‑K 问题,流程如下图所示。
1. 初始化一个小顶堆,其堆顶元素最小。
2. 先将数组的前 𝑘 个元素依次入堆。
3. 从第 𝑘 + 1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
4. 遍历完成后,堆中保存的就是最大的 𝑘 个元素。
总共执行了
𝑛
轮入堆和出堆,堆的最大长度为 𝑘 ,因此时间复杂度为
𝑂(𝑛
log
𝑘)
。该方法的效率很高,当
𝑘
较小时,时间复杂度趋向 𝑂(𝑛) ;当
𝑘
较大时,时间复杂度不会超过
𝑂(𝑛
log
𝑛) 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 𝑘
个元素的动态更新。
/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
// 初始化小顶堆
Queue<Integer> heap = new PriorityQueue<Integer>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.offer(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.offer(nums[i]);
}
}
return heap;
}
总结
1. 重点回顾
‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
‧ 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
‧ 堆的常用操作及其对应的时间复杂度包括:元素入堆 𝑂(log
𝑛)
、堆顶元素出堆
𝑂(
log
𝑛)
和访问堆顶元素O(1)
‧ 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
‧ 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
‧ 输入𝑛 个元素并建堆的时间复杂度可以优化至
𝑂(𝑛)
,非常高效。
‧ Top‑K 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为
𝑂(𝑛
log
𝑘)
。
2Q&A
数据结构的“堆”与内存管理的“堆”是同一个概念吗?
两者不是同一个概念,只是碰巧都叫堆。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序可以请求一定量的堆内存,用于存储如对象和数组 等复杂结构。当这些数据不再需要时,程序需要释放这些内存,以防止内存泄露。相较于栈内存,堆内存的管理和使用需要更谨慎,不恰当的使用可能会导致内存泄露和野指针等问题。