算法之搜索算法

1.二分查找

「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。
给定一个长度为 𝑛 的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找 并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 −1

 

如下图所示,我们先初始化指针 𝑖 = 0 𝑗 = 𝑛 − 1 ,分别指向数组首元素和尾元素,代表搜索区间
[0, 𝑛 − 1] 。请注意,中括号表示闭区间,其包含边界值本身。
接下来,循环执行以下两步。
1. 计算中点索引 𝑚 = ⌊(𝑖 + 𝑗)/2⌋ ,其中 ⌊ ⌋ 表示向下取整操作。
2. 判断 nums[m] target 的大小关系,分为以下三种情况。
        1. 当 nums[m] < target 时,说明 target 在区间 [𝑚 + 1, 𝑗] 中,因此执行 𝑖 = 𝑚 + 1
        2. 当 nums[m] > target 时,说明 target 在区间 [𝑖, 𝑚 − 1] 中,因此执行 𝑗 = 𝑚 − 1
        3. 当 nums[m] = target 时,说明找到 target ,因此返回索引 𝑚
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 −1

值得注意的是,由于 𝑖 𝑗 都是 int 类型, 因此 𝑖 + 𝑗 可能会超出 int 类型的取值范围 。为了避免大数越界,我们通常采用公式 𝑚 = ⌊𝑖 + (𝑗 − 𝑖)/2⌋ 来计算中点。
//基于双闭区间
static int binarySearch(int[] nums,int target){
        //初始化初始指针的位置,分别指向数组的首尾
        int i=0,j=nums.length-1;

        while (i<=j){
            //计算中间点,j-i表示当前的搜索范围,
            //将其除以2是为了得到中间点相对于搜索范围起始位置的偏移量,再加上起始位置 i,
            //得到实际中间点的位置。这种写法避免了在大数相加时可能出现的溢出问题。
            int centre=i+(j-i)/2;

            //如果相等就找到了
            if(target==nums[centre]){
                return centre;
            }

            // 加1或减1是为了调整搜索范围,防止进入死循环。如果不进行这样的调整,
            // 在某些情况下可能会导致指针不再移动,使得循环无法结束。

            //如果目标值大于中间值,将i右移
            if(target>nums[centre]){
               i=centre+1;
            }
            //如果目标值小于中间值,将j左移
            if(target<nums[centre]){
                j=centre-1;
            }
        }
        return 0;
    }
时间复杂度 𝑂( log 𝑛) :在二分循环中,区间每轮缩小一半,循环次数为 log 2 𝑛
空间复杂度 𝑂(1) :指针 𝑖 𝑗 使用常数大小空间。

1.1区间表示方法

除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 [0, 𝑛) ,即左边界包含自身,右边 界不包含自身。在该表示下,区间 [𝑖, 𝑗] 𝑖 = 𝑗 时为空。
我们可以基于该表示实现具有相同功能的二分查找算法。
    /* 二分查找(左闭右开) */
    int binarySearchLCRO(int[] nums, int target) {
        // 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素 +1
        int i = 0, j = nums.length;
        // 循环,当搜索区间为空时跳出(当 i = j 时为空)
        while (i < j) {
            int m = i + (j - i) / 2; // 计算中点索引 m
            if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
                i = m + 1;
            else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
                j = m;
            else // 找到目标元素,返回其索引
                return m;
        }
        // 未找到目标元素,返回 -1
        return -1;
    }
在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。
由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 𝑖 𝑗 缩小区间操作也是对称的。这样更不容易出错,因此一般建议采用“双闭区间”的写法

1.2 优点与局限性

二分查找在时间和空间方面都有较好的性能。
‧ 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 𝑛 = 2 20时,线性查找需要 2的20次方   = 1048576 轮循环,而二分查找仅需 log 2 2的 20次方  = 20 轮循环。
‧ 二分查找无须额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。 然而,二分查找并非适用于所有情况,主要有以下原因。
二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 𝑂(𝑛 log 𝑛) ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 𝑂(𝑛) ,也是非常昂贵的。
二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 𝑛 较小 时,线性查找反而比二分查找更快。

1.3 二分查找插入点

二分查找不仅可用于搜索目标元素,还具有许多变种问题,比如搜索目标元素的插入位置。

1.3.1无重复元素的情况

给定一个长度为 𝑛 的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target
插入到数组 nums 中,并保持其有序性。若数组中已存在元素 target ,则插入到其左方。请返
回插入后 target 在数组中的索引。
如果想要复用上节的二分查找代码,则需要回答以下两个问题。
问题一 :当数组中包含 target 时,插入点的索引是否是该元素的索引?
题目要求将 target 插入到相等元素的左边,这意味着新插入的 target 替换了原来 target 的位置。也就是说,当数组包含 target 时,插入点的索引就是该 target 的索引
问题二 :当数组中不存在 target 时,插入点是哪个元素的索引?
进一步思考二分查找过程:当 nums[m] < target 𝑖 移动,这意味着指针 𝑖 在向大于等于 target 的元素靠近。同理,指针 𝑗 始终在向小于等于 target 的元素靠近。
因此二分结束时一定有: 𝑖 指向首个大于 target 的元素, 𝑗 指向首个小于 target 的元素。 易得当数组不包含 target 时,插入索引为 𝑖
/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(int[] nums, int target) {
    int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
    while (i <= j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target) {
            i = m + 1; // target 在区间 [m+1, j] 中
        } else if (nums[m] > target) {
            j = m - 1; // target 在区间 [i, m-1] 中
        } else {
            return m; // 找到 target ,返回插入点 m
        }
    }
    // 未找到 target ,返回插入点 i
    return i;
}

1.3.2存在重复元素

在上一题的基础上,规定数组可能包含重复元素,其余不变
假设数组中存在多个 target ,则普通二分查找只能返回其中一个 target 的索引, 而无法确定该元素的左边 和右边还有多少 target
题目要求将目标元素插入到最左边, 所以我们需要查找数组中最左一个 target 的索引 。初步考虑通过下图所示的步骤实现。
1. 执行二分查找,得到任意一个 target 的索引,记为 𝑘
2. 从索引 𝑘 开始,向左进行线性遍历,当找到最左边的 target 时返回。
此方法虽然可用,但其包含线性查找,因此时间复杂度为 𝑂(𝑛) 。当数组中存在很多重复的 target 时,该方法效率很低。
现考虑拓展二分查找代码。如下图所示,整体流程保持不变,每轮先计算中点索引 𝑚 ,再判断 target
nums[m] 大小关系,分为以下几种情况。
‧ 当 nums[m] < target nums[m] > target 时,说明还没有找到 target ,因此采用普通二分查找的缩小区间操作,从而使指针 𝑖 𝑗 target 靠近
‧ 当 nums[m] == target 时,说明小于 target 的元素在区间 [𝑖, 𝑚 − 1] 中,因此采用 𝑗 = 𝑚 − 1 来缩
小区间, 从而使指针 𝑗 向小于 target 的元素靠近
循环完成后, 𝑖 指向最左边的 target 𝑗 指向首个小于 target 的元素, 因此索引 𝑖 就是插入点
观察以下代码,判断分支 nums[m] > target nums[m] == target 的操作相同,因此两者可以合并。 即便如此,我们仍然可以将判断条件保持展开,因为其逻辑更加清晰、可读性更好。
int binarySearchInsertion(int[] nums, int target) {
        int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
        while (i <= j) {
            int m = i + (j - i) / 2; // 计算中点索引 m
            if (nums[m] < target) {
                i = m + 1; // target 在区间 [m+1, j] 中
            } else if (nums[m] > target) {
                j = m - 1; // target 在区间 [i, m-1] 中
            } else {
                j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
            }
        }
        // 返回插入点 i
        return i;
    }

1.4二分查找边界

1.4.1查找左边界

给定一个长度为 𝑛 的有序数组 nums ,数组可能包含重复元素。请返回数组中最左一个元素
target 的索引。若数组中不包含该元素,则返回 −1

回忆二分查找插入点的方法,搜索完成后 𝑖 指向最左一个 target 因此查找插入点本质上是在查找最左一个 target 的索引
考虑通过查找插入点的函数实现查找左边界。请注意,数组中可能不包含 target ,这种情况可能导致以下两种结果。
‧ 插入点的索引 𝑖 越界。
‧ 元素 nums[i] target 不相等。
当遇到以上两种情况时,直接返回 −1 即可。
/* 二分查找最左一个 target */
    int binarySearchLeftEdge(int[] nums, int target) {
        // 等价于查找 target 的插入点
        int i = binarySearchInsertion(nums, target);
        // 未找到 target ,返回 -1
        if (i == nums.length || nums[i] != target) {
            return -1;
        }
        // 找到 target ,返回索引 i
        return i;
    }

    /* 二分查找插入点(存在重复元素) */
    int binarySearchInsertion(int[] nums, int target) {
        int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
        while (i <= j) {
            int m = i + (j - i) / 2; // 计算中点索引 m
            if (nums[m] < target) {
                i = m + 1; // target 在区间 [m+1, j] 中
            } else if (nums[m] > target) {
                j = m - 1; // target 在区间 [i, m-1] 中
            } else {
                j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
            }
        }
        // 返回插入点 i
        return i;
    }

1.4.2 查找右边界

那么如何查找最右一个 target 呢?最直接的方式是修改代码,替换在 nums[m] == target 情况下的指针收缩操作。代码在此省略,
下面我们介绍两种更加取巧的方法。

1. 复用查找左边界

实际上,我们可以利用查找最左元素的函数来查找最右元素,具体方法为: 将查找最右一个 target 转化为查 找最左一个 target + 1
如图 10‑7 所示,查找完成后,指针𝑖 指向最左一个 target + 1 (如果存在),而 𝑗 指向最右一个 target 此返回 𝑗 即可

请注意,返回的插入点是 𝑖 ,因此需要将其减 1 ,从而获得 𝑗
/* 二分查找最右一个 target */
int binarySearchRightEdge(int[] nums, int target) {
    // 转化为查找最左一个 target + 1
    int i = binary_search_insertion.binarySearchInsertion(nums, target + 1);
    // j 指向最右一个 target ,i 指向首个大于 target 的元素
    int j = i - 1;
    // 未找到 target ,返回 -1
    if (j == -1 || nums[j] != target) {
        return -1;
    }
    // 找到 target ,返回索引 j
    return j;
}
2. 转化为查找元素
我们知道,当数组不包含 target 时,最终 𝑖 𝑗 会分别指向首个大于、小于 target 的元素。
因此,如下图所示,我们可以构造一个数组中不存在的元素,用于查找左右边界。
‧ 查找最左一个 target :可以转化为查找 target - 0.5 ,并返回指针 𝑖
‧ 查找最右一个 target :可以转化为查找 target + 0.5 ,并返回指针j。

代码在此省略,值得注意以下两点。
‧ 给定数组不包含小数,这意味着我们无须关心如何处理相等的情况。
‧ 因为该方法引入了小数,所以需要将函数中的变量 target 改为浮点数类型。

2.哈希优化策略

在算法题中, 我们常通过将线性查找替换为哈希查找来降低算法的时间复杂度 。我们借助一个算法题来加深理解。
Q:给定一个整数数组 nums 和一个目标元素 target ,请在数组中搜索“和”为 target 的两个元
素,并返回它们的数组索引。返回任意一个解即可。
1.考虑直接遍历所有可能的组合。如下图所示,我们开启一个两层循环,在每轮中判断两个整数的和是否为target ,若是则返回它们的索引。
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target) {
    int size = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return new int[] { i, j };
            }
        }
    return new int[0];
}
此方法的时间复杂度为 𝑂(𝑛 2 ) ,空间复杂度为 𝑂(1) ,在大数据量下非常耗时。
2 哈希查找:以空间换时间
考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组,每轮执行下图所示的步骤。
1. 判断数字 target - nums[i] 是否在哈希表中,若是则直接返回这两个元素的索引。
2. 将键值对 nums[i] 和索引 i 添加进哈希表。
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
    int size = nums.length;
    // 辅助哈希表,空间复杂度 O(n)
    Map<Integer, Integer> dic = new HashMap<>();
    // 单层循环,时间复杂度 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.containsKey(target - nums[i])) {
            return new int[] { dic.get(target - nums[i]), i };
        }
        dic.put(nums[i], i);
    }
    return new int[0];
}

此方法通过哈希查找将时间复杂度从O(n2)降低至O(n),大幅提升运行效率。
由于需要维护一个额外的哈希表,因此空间复杂度为O(n)。尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法。
 

3.重识搜索算法

「搜索算法 searching algorithm」用于在数据结构(例如数组、链表、树或图)中搜索一个或一组满足特定条件的元素。
搜索算法可根据实现思路分为以下两类。
通过遍历数据结构来定位目标元素 ,例如数组、链表、树和图的遍历等。
利用数据组织结构或数据包含的先验信息,实现高效元素查找 ,例如二分查找、哈希查找和二叉搜索树查找等。
不难发现,这些知识点都已在前面的章节中介绍过,因此搜索算法对于我们来说并不陌生。在本节中,我们将从更加系统的视角切入,重新审视搜索算法。

3.1 暴力搜索

暴力搜索通过遍历数据结构的每个元素来定位目标元素。
‧“线性搜索”适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
‧“广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜
索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。
暴力搜索的优点是简单且通用性好, 无须对数据做预处理和借助额外的数据结构
然而, 此类算法的时间复杂度为 𝑂(𝑛) ,其中 𝑛 为元素数量,因此在数据量较大的情况下性能较差。

3.2 自适应搜索

自适应搜索利用数据的特有属性(例如有序性)来优化搜索过程,从而更高效地定位目标元素。
‧“二分查找”利用数据的有序性实现高效查找,仅适用于数组。
‧“哈希查找”利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
‧“树查找”在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素。
此类算法的优点是效率高, 时间复杂度可达到 𝑂( log 𝑛) 甚至 𝑂(1)
然而, 使用这些算法往往需要对数据进行预处理 。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开支。
自适应搜索算法常被称为查找算法, 主要关注在特定数据结构中快速检索目标元素

3.3 搜索方法选取

给定大小为 𝑛 的一组数据,我们可以使用线性搜索、二分查找、树查找、哈希查找等多种方法在该数据中搜索目标元素。各个方法的工作原理如下图所示。

上述几种方法的操作效率与特性如下表所示。

查找算法效率对比
线性搜索
二分查找
树查找
哈希查找
查找元素
𝑂(𝑛)
𝑂(log 𝑛)
𝑂(log 𝑛)
𝑂(1)
插入元素
𝑂(1)
𝑂(𝑛)𝑂(log 𝑛)𝑂(1)
删除元素
𝑂(𝑛)
𝑂(𝑛)𝑂(log 𝑛)𝑂(1)
额外空间
𝑂(1)
𝑂(1)𝑂(𝑛)𝑂(𝑛)
数据预处理
/排序O(n log n)建树O(n log n)
建哈希表 𝑂(𝑛)
数据是否有序
无序
有序
有序
无序

搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。

线性搜索
‧ 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。
‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。
二分查找
‧ 适用于大数据量的情况,效率表现稳定,最差时间复杂度为 𝑂( log 𝑛)
‧ 数据量不能过大,因为存储数组需要连续的内存空间。
‧ 不适用于高频增删数据的场景,因为维护有序数组的开销较大。
哈希查找
‧ 适合对查询性能要求很高的场景,平均时间复杂度为 𝑂(1)
‧ 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性。
‧ 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险。
‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。
树查找
‧ 适用于海量数据,因为树节点在内存中是分散存储的。
‧ 适合需要维护有序数据或范围查找的场景。
‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至
𝑂(𝑛)
‧ 若使用 AVL 树或红黑树,则各项操作可在 𝑂(log 𝑛) 效率下稳定运行,但维护树平衡的操作会增加额 外开销。

4.小结

‧ 二分查找依赖于数据的有序性,通过循环逐步缩减一半搜索区间来实现查找。它要求输入数据有序,且 仅适用于数组或基于数组实现的数据结构。
‧ 暴力搜索通过遍历数据结构来定位数据。线性搜索适用于数组和链表,广度优先搜索和深度优先搜索 适用于图和树。此类算法通用性好,无须对数据预处理,但时间复杂度 𝑂(𝑛) 较高。

‧ 哈希查找、树查找和二分查找属于高效搜索方法,可在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达O(logn)甚至O(1),但通常需要借助额外数据结构。
·实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合适的搜索方法。
·线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适合对查询效率要求较高且无须范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。
·用哈希查找替换线性查找是一种常用的优化运行时间的策略,可将时间复杂度从O(n)降低至O(1)
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值