Problem B 最小堆
题目描述
给定一棵带权二叉树,请判断它是不是一个最小堆。
一棵二叉树是一个最小堆,当且仅当对于树上任意一个节点,它的权值都小于或等于以它为根的子树中的所有权值。
输入格式
输入数据第一行是一个整数T(1<=T<=100),表示测试数据的组数。
对于每组测试数据:
第一行是一个整数N(1<=N<=100),表示树的节点个数。
接下来一行包含N个正整数,第i个整数valuei(1<=valuei<=1000)表示编号i的点的权值。
接下来N-1行,每行两个整数u和v(1<=u,v<=N, u!=v),表示节点u是节点v的父节点。
测试数据保证给定的一定是一棵二叉树,并且节点1是树的根结点
输出格式
对于每组测试数据,如果给定的树是一个最小堆则输出Yes,否则输出No。
输入样例
3
1
10
3
10 5 3
1 2
1 3
5
1 2 3 4 5
1 3
1 2
2 4
2 5
输出样例
Yes
No
Yes
代码
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
int main(){
int T;
scanf("%d",&T);
while(T--){
int N;
scanf("%d",&N);
int a[N+1];
for(int i=1;i<=N;i++){
scanf("%d",a+i);
}
bool ok=true;
for(int i=0;i<N-1;i++){
int f,s;
scanf("%d%d",&f,&s);
if(a[f]>a[s]) ok=false;
}
if(ok){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}