103.二叉树的锯齿形层序遍历

1.题目描述

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[20,9],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -100 <= Node.val <= 100

2.解题思路

借助队列层序遍历二叉树,根据当前遍历到的层数,决定是否将当前层元素倒序,初始化根节点所在层layer = 1,奇数层从左到右的遍历,偶数层从右向左遍历,因此当我们遍历完当前层的所有元素,并且得到一个curLayer的列表,列表中存储了所有从左向右遍历得到的值,如果是偶数层,就需要把当前列表中的元素逆序输出,通过调用Collections.reverse(curLayer)方法实现。

3.代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int layer = 1;
        //奇数层 从左向右 偶数层 从右向左
        while (!queue.isEmpty()) {
            int sz = queue.size();
            List<Integer> curLayer = new ArrayList<>();
            for (int i = 0; i < sz; i++) {
                TreeNode cur = queue.poll();
                curLayer.add(cur.val);
                if (cur.left != null) {
                    queue.offer(cur.left);
                }
                if (cur.right != null) {
                    queue.offer(cur.right);
                }
            }
            if (layer % 2 == 0) {
                Collections.reverse(curLayer);
            }
            res.add(curLayer);
            layer += 1;
        }
        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值