利用优先级队列(priority_queue)优化单源最短路径算法

本文探讨如何利用优先级队列(priority_queue)优化单源最短路径算法,尤其是Dijkstra算法。通过使用优先级队列,可以将原本时间复杂度为O(|V|^2)的算法优化到O((|V|+|E|)*log|V|),显著提高效率。文章介绍了相关数据结构和算法实现细节。
摘要由CSDN通过智能技术生成

单源最短路径,不用说一定是经典的dijkstra算法了。dijkstra的原始版本做到了很好的解决问题,但是还有进一步优化的空间。

接下来展示通过“优先级队列(priority_queue)”优化时间复杂度的方法。
首先把图的类定义出来,我采用的是“class Edge”+”class Graph”的定义方案,将有向边和图的实现抽离,如有不妥,方请指正:

template<typename Type>
class Edge
{
    template<typename Type>
    friend class Graph;
public:
    explicit Edge(const size_t& start, const size_t& end = 0, const Type& value = Type())
        :start_idx(start), end_idx(end), value(value), flag(Flags::unvisited) {}
    size_t getEnd() const { return end_idx; }
    size_t getValue() const { return value; }
    ~Edge() = default;
private:
    size_t start_idx;
    size_t end_idx;
    Type value;
    Flags flag; // search for next_edge unvisied edge.
};
template<typename Type>
class Graph
{
    using Node = vector<Edge<Type>>;
    int INFTY = (1 << 20);
public:
    Graph() :
        num_edges(0) {}
    explicit Graph(const size_t& size);
    ~Graph() = default;
    // some other functions.

    // return iterator points to the specific edge.
    decltype(auto) findEdge(const size_t& vertex_idx, const size_t& end) const;

    void addEdge(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值