题意:以一棵树的1节点为起点,某点为终点,遍历所有节点。选择适当的终点求出最短的旅游距离。
做法:基本的树形DP,求出每颗子树所有边的和,模拟一下,就可以得出f(u)=f(father)-2*sum[u]-2*line(u,v)+line(u,v)+sum[u]*2;
当然,父节点是0的时候着重考虑一下。
#include <iostream>
#include <map>
#include <vector>
#include <utility>
#include <cstdio>
#define LMT 100003
#define LL long long//单点的时候啊,ans输出不可为-1!!
using namespace std;
LL sum[LMT],tem[LMT],ans;
map<pair<int,int>,LL>line;
vector<int>gra[LMT];
void inidfs(int u,int pri)
{
for(size_t i=0;i<gra[u].size();i++)
if(gra[u][i]!=pri)
{
int v=gra[u][i];inidfs(v,u);
sum[u]+=line[make_pair(u,v)]+sum[v];
}
}
void dfs(int u,int pri)
{
if(pri!=-1)
{
LL add;
if(pri!=1)add=tem[pri]-2*sum[u]-2*line[make_pair(pri,u)];
else add=2*(sum[pri]-sum[u]-line[make_pair(pri,u)]);
tem[u]=add+line[make_pair(pri,u)]+sum[u]*2;
if(ans==-1||ans>tem[u])ans=tem[u];
}
for(size_t i=0;i<gra[u].size();i++)
if(gra[u][i]!=pri)
{
int v=gra[u][i];
dfs(v,u);
}
}
int main()
{
int n,u,v;
LL w;
scanf("%d",&n);ans=-1;
for(int i=1;i<n;i++)
{
scanf("%d%d%I64d",&u,&v,&w);
line[make_pair(u,v)]=w;
line[make_pair(v,u)]=w;
gra[u].push_back(v);
gra[v].push_back(u);
}
inidfs(1,-1);
tem[1]=sum[1];
dfs(1,-1);
ans=ans<0?0:ans;
printf("%I64d\n",ans);
return 0;
}