#include <iostream>
#include <algorithm>
#include <cstdio>
#define eps 1e16
/*******
其实一开始的想法是对的,dp[i][j]=min(dp[i][t]+abs(a[i]-a[t]));
可是这样一来有n^3,当时还没有发现一个规律啊....
此时的a[t]要小于a[i],何不排一个序,dp[i][j],j为现在所在的是小于等于第j大的元素,这样一来
dp[i][j]=min(dp[i-1][j]+abs(a[i]-a'[j]),dp[i][j-1])
a'是经过排序的a。
记住,这是对关系的整合能力...
还有实现的时候记得省一些内存
******/
#define LL long long
const int LMT=5002;
using namespace std;
LL dp[2][LMT];
int a[LMT],b[LMT];
void init()
{
for(int i=0;i<2;i++)
for(int j=0;j<LMT;j++)dp[i][j]=eps;
for(int j=0;j<LMT;j++)dp[0][j]=0;
}
int main()
{
int n,tag=1;
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
dp[1][1]=abs(a[1]-b[1]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
if(i!=1||j!=1)
dp[tag][j]=min(dp[tag^1][j]+abs(a[i]-b[j]),dp[tag][j-1]);
tag^=1;
for(int j=0;j<=n;j++)dp[tag][j]=eps;
}
cout<<dp[tag^1][n]<<endl;
return 0;
}