hdu 4089 Activation 概率dp 消元

虽然是求概率,但是和倒着求期望有些类似,使用的是全概率公式dp[i][j]表示的是从这一点到达目标点的概率

图中有环,只能消元,成环有一定的规律,先求dp[i][i]

参考 http://www.cnblogs.com/kuangbin/archive/2012/10/03/2710987.html

#include<iostream>
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
int dir[4][2]={0,1,0,-1,1,0,-1,0};
const double eps=1e-8;

double c[2005];
double pp[2005];
double dp[2005][2005];
int n,m,k;
double p1,p2,p3,p4,p,p31,p41;

int main()
{
	while(scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
	{
		if(p4<eps)
        {
            printf("0.00000\n");
            continue;
        }
		memset(dp,0,sizeof(dp));
        memset(c,0,sizeof(c));
		int i,j;
		p=p2/(1.0-p1);
		p31=p3/(1.0-p1);
		p41=p4/(1.0-p1);
		pp[0]=1.0;
		for(int i=1;i<=n;i++) pp[i]=p*pp[i-1];
        dp[1][1]=p41/(1-p);
        c[1]=p41;
        for(int i=2;i<=n;i++)
        {
            for(int j=2;j<=k&&j<=i;j++)
				c[j]=p31*dp[i-1][j-1]+p41;
            for(int j=k+1;j<=i;j++) 
				c[j]=p31*dp[i-1][j-1];
            double tmp=c[1]*pp[i-1];
            for(int j=2;j<=i;j++)
				tmp+=c[j]*pp[i-j];
            dp[i][i]=tmp/(1-pp[i]);
            dp[i][1]=p*dp[i][i]+c[1];
            for(int j=2;j<i;j++)
				dp[i][j]=p*dp[i][j-1]+c[j];
        }
        printf("%.5lf\n",dp[n][m]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值