虽然是求概率,但是和倒着求期望有些类似,使用的是全概率公式dp[i][j]表示的是从这一点到达目标点的概率
图中有环,只能消元,成环有一定的规律,先求dp[i][i]
参考 http://www.cnblogs.com/kuangbin/archive/2012/10/03/2710987.html
#include<iostream>
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
int dir[4][2]={0,1,0,-1,1,0,-1,0};
const double eps=1e-8;
double c[2005];
double pp[2005];
double dp[2005][2005];
int n,m,k;
double p1,p2,p3,p4,p,p31,p41;
int main()
{
while(scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
{
if(p4<eps)
{
printf("0.00000\n");
continue;
}
memset(dp,0,sizeof(dp));
memset(c,0,sizeof(c));
int i,j;
p=p2/(1.0-p1);
p31=p3/(1.0-p1);
p41=p4/(1.0-p1);
pp[0]=1.0;
for(int i=1;i<=n;i++) pp[i]=p*pp[i-1];
dp[1][1]=p41/(1-p);
c[1]=p41;
for(int i=2;i<=n;i++)
{
for(int j=2;j<=k&&j<=i;j++)
c[j]=p31*dp[i-1][j-1]+p41;
for(int j=k+1;j<=i;j++)
c[j]=p31*dp[i-1][j-1];
double tmp=c[1]*pp[i-1];
for(int j=2;j<=i;j++)
tmp+=c[j]*pp[i-j];
dp[i][i]=tmp/(1-pp[i]);
dp[i][1]=p*dp[i][i]+c[1];
for(int j=2;j<i;j++)
dp[i][j]=p*dp[i][j-1]+c[j];
}
printf("%.5lf\n",dp[n][m]);
}
return 0;
}