二分图的最小点覆盖还是很常见的。。这种边覆盖还是第一次见。
题目是给出一个n*m的矩阵,每个点是一个值,求取出权值和最小的点来把各行各列都覆盖。
于是转换成一个二分图,左边n个点,右边m个点,中间的边就是原来矩阵的每个点,求权值和最少的边把左右两排点覆盖。
使用最小费用最大流,构图如下:
添加原点和超级原点,汇点和超级汇点。
超级原点到原点流量为n*m,花费为0;
汇点到超级汇点流量为n*m,花费为0;
左边2*n个点,右边2*m个点。
上方的n,m个点是用来约束覆盖的:流量为1,费用为负无穷
下方的n,m个点是用来提供边的:流量为m,n(其实就是无穷),费用为0
关键:从原点到汇点添加流量为n*m,费用为0的边,用来分流
最终结果加上一个(n+m)*负无穷
图大致如下:(n=4,m=5)
套的费用流模板
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int n,m;
const int N = 500;//点
const int M = 2 * 100000;//边
const int inf = 1000000000;
const int lala = 100000;
struct Node{//边,点f到点t,流量为c,费用为w
int f, t, c, w;
}e[M];
int next1[M], point[N], dis[N], q[N], pre[N], ne;//ne为已添加的边数,next,point为邻接表,dis为花费,pre为父亲节点
bool u[N];
void init(){
memset(point, -1, sizeof(point));
ne = 0;
}
void add_edge(int f, int t, int d1, int d2, int w){//f到t的一条边,流量为d1,反向流量d2,花费w,反向边花费-w(可以反悔)
e[ne].f = f, e[ne].t = t, e[ne].c = d1, e[ne].w = w;
next1[ne] = point[f], point[f] = ne++;
e[ne].f = t, e[ne].t = f, e[ne].c = d2, e[ne].w = -w;
next1[ne] = point[t], point[t] = ne++;
}
bool spfa(int s, int t, int n){
int i, tmp, l, r;
memset(pre, -1, sizeof(pre));
for(i = 0; i < n; ++i)
dis[i] = inf;
dis[s] = 0;
q[0] = s;
l = 0, r = 1;
u[s] = true;
while(l != r) {
tmp = q[l];
l = (l + 1) % (n + 1);
u[tmp] = false;
for(i = point[tmp]; i != -1; i = next1[i]) {
if(e[i].c && dis[e[i].t] > dis[tmp] + e[i].w) {
dis[e[i].t] = dis[tmp] + e[i].w;
pre[e[i].t] = i;
if(!u[e[i].t]) {
u[e[i].t] = true;
q[r] = e[i].t;
r = (r + 1) % (n + 1);
}
}
}
}
if(pre[t] == -1)
return false;
return true;
}
void MCMF(int s, int t, int n, int &flow, int &cost){//起点s,终点t,点数n,最大流flow,最小花费cost
int tmp, arg;
flow = cost = 0;
while(spfa(s, t, n)) {
arg = inf, tmp = t;
while(tmp != s) {
arg = min(arg, e[pre[tmp]].c);
tmp = e[pre[tmp]].f;
}
tmp = t;
while(tmp != s) {
e[pre[tmp]].c -= arg;
e[pre[tmp] ^ 1].c += arg;
tmp = e[pre[tmp]].f;
}
flow += arg;
cost += arg * dis[t];
}
}
//建图前运行init()
//节点下标从0开始
//加边时运行add_edge(a,b,c,0,d)表示加一条a到b的流量为c花费为d的边(注意花费为单位流量花费)
//特别注意双向边,运行add_edge(a,b,c,0,d),add_edge(b,a,c,0,d)较好,不要只运行一次add_edge(a,b,c,c,d),费用会不对。
//求解时代入MCMF(s,t,n,v1,v2),表示起点为s,终点为t,点数为n的图中,最大流为v1,最大花费为v2
int main()
{
int T,R=0;
scanf("%d",&T);
while(T--)
{
R++;
scanf("%d%d",&n,&m);
int i,j,ta,v1,v2,ans;
init();
for(i=1;i<=m;i++)
{
add_edge(0,i,1,0,-lala);
add_edge(0,m+i,n,0,0);
}
for(i=1;i<=n;i++)
{
add_edge(m*2+i,m*2+n*2+1,1,0,-lala);
add_edge(m*2+n+i,m*2+n*2+1,m,0,0);
}
add_edge(m*2+n*2+2,0,m*n,0,0);
add_edge(m*2+n*2+1,m*2+n*2+3,m*n,0,0);
add_edge(0,m*2+n*2+1,n*m,0,0);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
scanf("%d",&ta);
add_edge(j,m*2+i,1,0,ta);
add_edge(j,m*2+n+i,1,0,ta);
add_edge(m+j,m*2+i,1,0,ta);
add_edge(m+j,m*2+n+i,1,0,ta);
}
MCMF(m*2+n*2+2,m*2+n*2+3,m*2+n*2+4,v1,v2);
ans=v2+(n+m)*lala;
printf("Case %d: %d\n",R,ans);
}
return 0;
}