2014 编程之美 资格赛 第三题 格格取数(二分图带权最小边覆盖)

二分图的最小点覆盖还是很常见的。。这种边覆盖还是第一次见。

题目是给出一个n*m的矩阵,每个点是一个值,求取出权值和最小的点来把各行各列都覆盖。

于是转换成一个二分图,左边n个点,右边m个点,中间的边就是原来矩阵的每个点,求权值和最少的边把左右两排点覆盖。

使用最小费用最大流,构图如下:

添加原点和超级原点,汇点和超级汇点。

超级原点到原点流量为n*m,花费为0;

汇点到超级汇点流量为n*m,花费为0;

左边2*n个点,右边2*m个点。

上方的n,m个点是用来约束覆盖的:流量为1,费用为负无穷

下方的n,m个点是用来提供边的:流量为m,n(其实就是无穷),费用为0

关键:从原点到汇点添加流量为n*m,费用为0的边,用来分流

最终结果加上一个(n+m)*负无穷

图大致如下:(n=4,m=5)


套的费用流模板

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;

int n,m;

const int N = 500;//点
const int M = 2 * 100000;//边
const int inf = 1000000000;
const int lala = 100000;
struct Node{//边,点f到点t,流量为c,费用为w
	int f, t, c, w;
}e[M];
int next1[M], point[N], dis[N], q[N], pre[N], ne;//ne为已添加的边数,next,point为邻接表,dis为花费,pre为父亲节点
bool u[N];
void init(){
	memset(point, -1, sizeof(point));
	ne = 0;
}
void add_edge(int f, int t, int d1, int d2, int w){//f到t的一条边,流量为d1,反向流量d2,花费w,反向边花费-w(可以反悔)
	e[ne].f = f, e[ne].t = t, e[ne].c = d1, e[ne].w = w;
	next1[ne] = point[f], point[f] = ne++;
	e[ne].f = t, e[ne].t = f, e[ne].c = d2, e[ne].w = -w;
	next1[ne] = point[t], point[t] = ne++;
}
bool spfa(int s, int t, int n){
	int i, tmp, l, r;
	memset(pre, -1, sizeof(pre));
	for(i = 0; i < n; ++i)
		dis[i] = inf;
	dis[s] = 0;
	q[0] = s;
	l = 0, r = 1;
	u[s] = true;
	while(l != r) {
		tmp = q[l];
		l = (l + 1) % (n + 1);
		u[tmp] = false;
		for(i = point[tmp]; i != -1; i = next1[i]) {
			if(e[i].c && dis[e[i].t] > dis[tmp] + e[i].w) {
				dis[e[i].t] = dis[tmp] + e[i].w;
				pre[e[i].t] = i;
				if(!u[e[i].t]) {
					u[e[i].t] = true;
					q[r] = e[i].t;
					r = (r + 1) % (n + 1);
				}
			}
		}
	}
	if(pre[t] == -1)
		return false;
	return true;
}
void MCMF(int s, int t, int n, int &flow, int &cost){//起点s,终点t,点数n,最大流flow,最小花费cost
	int tmp, arg;
	flow = cost = 0;
	while(spfa(s, t, n)) {
		arg = inf, tmp = t;
		while(tmp != s) {
			arg = min(arg, e[pre[tmp]].c);
			tmp = e[pre[tmp]].f;
		}
		tmp = t;
		while(tmp != s) {
			e[pre[tmp]].c -= arg;
			e[pre[tmp] ^ 1].c += arg;
			tmp = e[pre[tmp]].f;
		}
		flow += arg;
		cost += arg * dis[t];
	}
}
//建图前运行init()
//节点下标从0开始
//加边时运行add_edge(a,b,c,0,d)表示加一条a到b的流量为c花费为d的边(注意花费为单位流量花费)
//特别注意双向边,运行add_edge(a,b,c,0,d),add_edge(b,a,c,0,d)较好,不要只运行一次add_edge(a,b,c,c,d),费用会不对。
//求解时代入MCMF(s,t,n,v1,v2),表示起点为s,终点为t,点数为n的图中,最大流为v1,最大花费为v2

int main()
{
	int T,R=0;
	scanf("%d",&T);
	while(T--)
	{
		R++;
		scanf("%d%d",&n,&m);
		int i,j,ta,v1,v2,ans;
		init();
		for(i=1;i<=m;i++)
		{
			add_edge(0,i,1,0,-lala);
			add_edge(0,m+i,n,0,0);
		}
		for(i=1;i<=n;i++)
		{
			add_edge(m*2+i,m*2+n*2+1,1,0,-lala);
			add_edge(m*2+n+i,m*2+n*2+1,m,0,0);
		}
		add_edge(m*2+n*2+2,0,m*n,0,0);
		add_edge(m*2+n*2+1,m*2+n*2+3,m*n,0,0);
		add_edge(0,m*2+n*2+1,n*m,0,0);
		for(i=1;i<=n;i++)
			for(j=1;j<=m;j++)
			{
				scanf("%d",&ta);
				add_edge(j,m*2+i,1,0,ta);
				add_edge(j,m*2+n+i,1,0,ta);
				add_edge(m+j,m*2+i,1,0,ta);
				add_edge(m+j,m*2+n+i,1,0,ta);
			}
		MCMF(m*2+n*2+2,m*2+n*2+3,m*2+n*2+4,v1,v2);
		ans=v2+(n+m)*lala;
		printf("Case %d: %d\n",R,ans);
	}
	return 0;
}


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值