区间动态规划问题一般都是考虑,对于每段区间,他们的最优值都是由几段更小区间的最优值得到,是分治思想的一种应用,将一个区间问题不断划分为更小的区间直至一个元素组成的区间,枚举他们的组合 ,求合并后的最优值。
设F[i,j](1<=i<=j<=n)表示区间[i,j]内的数字相加的最小代价
最小区间F[i,i]=0(一个数字无法合并,∴代价为0)
每次用变量k(i<=k<=j-1)将区间分为[i,k]和[k+1,j]两段
For l:=1 to n do // l是区间长度,作为阶段。
for i:=1 to n do // i是穷举的区间的起点
begin
j:=i+l-1; // j是 区间的终点,这样所有的区间就穷举完毕
if j>n then break; // 这个if很关键。
for k:= i to j-1 do // 状态转移,去推出 f[i,j]
f[i , j]= max{f[ i,k]+ f[k+1,j]+ sum[i,j] }
end;
对于前缀和,我们用sum[i] = sum[i-1] +a[i]预处理出来
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1000;
const int INF = 1E9;
int n;
int dp[maxn][maxn];
int sum[maxn];
int a[maxn];
/*
11
13 1 45 7 20 4 19 13 40 33 38
*/
void init()
{
for(int i = 1;i<=n;i++)
{
scanf("%d",&a[i]);
}
sum[1] = a[1];
for(int i = 2;i<=n;i++)
{
sum[i] = sum[i-1] +a[i];
}
}
void solve()
{
init();
memset(dp,0,sizeof(dp));
for(int l = 2;l<=n;l++)
{
for(int i = 1;i<=n-l+1;i++)
{
int j = i + l -1;
dp[i][j] = INF;
for(int k =i;k<j;k++)
{
dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]);
}
dp[i][j] +=sum[j] - sum[i-1];
}
}
printf("%d\n",dp[1][n]);
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
solve();
}
return 0;
}