石头合并学习区间dp

区间动态规划问题一般都是考虑,对于每段区间,他们的最优值都是由几段更小区间的最优值得到,是分治思想的一种应用,将一个区间问题不断划分为更小的区间直至一个元素组成的区间,枚举他们的组合 ,求合并后的最优值。
设F[i,j](1<=i<=j<=n)表示区间[i,j]内的数字相加的最小代价
最小区间F[i,i]=0(一个数字无法合并,∴代价为0)

每次用变量k(i<=k<=j-1)将区间分为[i,k]和[k+1,j]两段

For l:=1 to n do // l是区间长度,作为阶段。
for i:=1 to n do // i是穷举的区间的起点
begin
j:=i+l-1; // j是 区间的终点,这样所有的区间就穷举完毕
if j>n then break; // 这个if很关键。
for k:= i to j-1 do // 状态转移,去推出 f[i,j]
f[i , j]= max{f[ i,k]+ f[k+1,j]+ sum[i,j] }
end;

对于前缀和,我们用sum[i] = sum[i-1] +a[i]预处理出来

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
const int maxn = 1000;
const int INF = 1E9;

int n;
int dp[maxn][maxn];
int sum[maxn];
int a[maxn];

/*
11
13 1 45 7 20 4 19 13 40 33 38
*/

void init()
{
    for(int i = 1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    sum[1] = a[1];
    for(int i = 2;i<=n;i++)
    {
        sum[i] = sum[i-1] +a[i];
    }
}
void solve()
{
    init();
    memset(dp,0,sizeof(dp));
    for(int l = 2;l<=n;l++)
    {
        for(int i = 1;i<=n-l+1;i++)
        {
            int j = i + l -1;
            dp[i][j] = INF;
            for(int k =i;k<j;k++)
            {
                dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]);
            }
            dp[i][j] +=sum[j] - sum[i-1];
        }
    }
    printf("%d\n",dp[1][n]);
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值