【问题描述】
贝茜像其它奶牛一样正在吃草,她正在思考她所在的地方。她注意到她只得到了一个平于海平面的广泛大片牧场。只有海拔1米或者更高更硬的草不那么美味。草随着海拔的增加越发难吃。 继续咀嚼,她意识到,这没有食欲的食物长成两侧的丘陵,形成了青翠美味丰富草地海洋中的一系列劣质草小岛 。贝茜穿上她的实验服,决心测定她的牧场有多少劣草小岛。她画出一张画有被分成R (1 < R <= 1,000) 行、C (1 < C<= 1,000)列的1*1小格子的地图。她为每个小格子测量了海拔高度,并四舍五入到非负整数。她饥饿地把所有美味草标的海拔标记成0。
她着手统计小岛。任何水平、垂直、斜向相邻的两个有劣草的格子将被认为在同一个岛中。在每一张她提供的地图中有多少劣草岛屿呢?
【输入格式】
第1行: 两个用空格隔开的整数: R 和 C ,接下来的R行,第 i+1 用C个看空格隔开的整数表示地图中的i行。
【输出格式】
一个代表岛屿数的整数。
【输入输出样例】
输入:
8 7
4 3 2 2 1 0 1
3 3 3 2 1 0 1
2 2 2 2 1 0 0
2 1 1 1 1 0 0
1 1 0 0 0 1 0
0 0 0 1 1 1 0
0 1 2 2 1 1 0
0 1 1 1 2 1 0
输出:
2
【数据范围】
1 < R <= 1,000
1 < C<= 1,000
当时做的时候看了一眼,什么?又是矩阵?我二维表建图不行,这个题每个坐标的值都还要变化感觉基本要GG了,直到我读到这句话
“任何水平、垂直、斜向相邻的两个有劣草的格子将被认为在同一个