POJ1664. 放苹果(DP)

2 篇文章 0 订阅

放苹果
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 35753 Accepted: 22083

Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8

Source

【分析】根据题意,我们可以记dp[m][n]m个苹果放到n个盘子里面,最多的分法数

        此问题可分为两个子问题:

(1)m<n时,由于“顺序无关”,因此m个苹果放到n个盘子里面 和 m个苹果放到m个盘子里面的情形是一样的,即dp[m][n]dp[m][m]

        此时的状态转移方程为:dp[m][n]=dp[m][m]

(2)当m>=n时,可以根据是否有盘子为空,分为两种放法:

        ①n个盘子都不为空,则相当于先将n个苹果逐个、依次放入n个盘子中,剩下的m-n个苹果再任意放入n个盘子中。也就是说,m-n个苹果放n个盘子里面,有dp[m-n][n]种放法。

        ②至少有一个盘子为空,即相当于“撤掉”一个盘子后再放苹果的情形,此时有dp[m][n-1]种放法。

   放法总数即上述①②两种情形之和。

        此时的状态转移方程为dp[i][j]=dp[i][j-1]+dp[i-j][j]

        需要注意以下4边界条件:

          ①苹果数m=0,盘子数1~n:此时“什么都不做”,相当于1种方案;

          ②苹果数m=1,盘子数1~n:此时可将这个苹果放到任何一个盘子中,因“顺序无关”,故有且仅有1种方案;

   ③苹果数1~m,盘子数n=0:此时“什么都不做”,相当于1种方案;

   ④苹果数1~m,盘子数n=1:此时只能将所有苹果放到仅有的1个盘子中,故有且仅有1种方案。

#include <iostream>
#include <cstdio>
using namespace std;
const int maxm=15;
const int maxn=15;
int t;
int M,N;
int dp[maxm][maxn]={0};  //dp[i][j]-i个苹果放到j个盘子中的最多分法 
int main()
{
	int i,j;
	//打表 
	for(j=1;j<=maxn;j++)
	{
		dp[0][j]=1;
		dp[1][j]=1;
	}
	for(i=1;i<=maxm;i++)
	{
		dp[i][0]=1;
		dp[i][1]=1;
	}
	for(i=2;i<=maxm;i++)
	{
		for(j=2;j<=maxn;j++)
		{
			if(i<j)
				dp[i][j]=dp[i][i];
			else
				dp[i][j]=dp[i-j][j]+dp[i][j-1];
		}
	}
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d %d",&M,&N);
		printf("%d\n",dp[M][N]);
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值